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Problem statement

Given:
Input/output data (xi, yi), and a group G acting on the input space
Objective:
Find an approximation f for the data that is invariant under the group
action, i.e.

f (g · x) = f (x) for all g ∈ G

Question:
How can we use machine learning to train a model which has this
invariance?

Classical approaches

1. Data augmentation [1]: for each pair (x, y) and each g ∈ G, add
the pair (g · x, y) to the data pairs; then search for the best
approximation f ignoring all invariance → the result will be nearly
invariant under the group action

2. Restrict architecture [2]: for a neural network, being invariant
under the group action is equivalent to relations between the
learnable parameters; impose this restriction while searching for
the best approximation

3. Pooling [3]: any map h : Rn → Rk can be made invariant under
the group action by pooling:

hpool(x) =
∑

g∈G
h(g · x) for x ∈ Rn

Can apply other pooling functions, and find the best approximation
over all functions h and all pooling functions at the same time
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Near-isometries

� Map H is an isometry if it preserves distances, i.e.

dist(u, v) = dist(H(u), H(v)) for all u, v

� The quotient space Rn/G is a metric space (under very mild
assumptions on the group action)

� Idea: choose an isometry H : Rn/G → Rm and approximate the
data pairs

(H(xi), yi)i∈I

by a function f
� use any machine learning model for this approximation
� apply the function f ◦H to new, unseen data points

� Exact isometries are hard to find, but always have one map that is
nearly an isometry: projection onto a fundamental domain (PFD).

A fundamental domain is a simply-connected set U ⊂ Rn which
intersects every G-orbit exactly once → the map x �→ (G · x) ∩ U is
well-defined and nearly an isometry

Experiment 1: Hodge numbers of Calabi-Yau manifolds

Complete Intersection Calabi-Yau manifolds are geometric objects that
can be encoded by a matrix A ∈ R12×15. If rows/columns are permuted,
the matrix encodes the same object. Each manifold naturally has a
Hodge number h1,1 that is expensive to compute.

Many approaches to learn the map A �→ h1,1, never get a map that
is invariant under row/column permutations [4, 5]. Here, G = S12 × S15

has more than 1020 elements!
We train on randomly permuted matrices comparing three tech-

niques. We use PFD as a near-isometry:

Test accuracy
without any preprocessing 0.18

with data augmentation 0.27
with near-isometry 0.62

Next we embed F/〈A〉 in R5 using the
Veronese embedding, where A is the antipo-
dal map. Overall the image is an embedding
of V = S2/Z4 in R5.

To embed R2×2/Z4 in Rm: find S2/Z4 ↪→ Sm−2,
then take the cone v⊥/Z4 ↪→ Rm−1, then
cross with R to get R2×2/Z4 ↪→ Rm.

S2

−→

F

Cone angle π

First we embed F = S2/〈R〉 ↪→ R3, where R
is a rotation by π.

−→

Z4 acts on R2×2 by cyclically permuting the
coordinates, fixing v = (1, 1, 1, 1), and acting
orthogonally on its complement.

1→−�

The action on S2 ⊂ v⊥ ⊂ R2×2 is generated
by a glide reflection through angle π/2.

Experiment 2: rotated handwritten digit recognition

The group G = Z4 acts on 8× 8 pixel images by rotations
(see the four rotations of an image showing the digit “6” below)

We train digit recognition with two near-isometries:
� H1 : R8×8/Z4 → R8×8 rotate image so that the top-left quadrant has

greatest total brightness (PFD)
� H2 : R8×8/Z4 → R2080 obtained by observing that

R8×8/Z4 = R× Cone(V ) for a singular space V that can be
embedded into Euclidean space using the Veronese embedding

Train neural networks on pairs (1) (x, y), (2) (H1(x), y)), and (3)
(H2(x), y), where x is a randomly rotated 8 × 8 image and y is the
digit in the image (between 0 and 9):

Test accuracy
(x, y) 0.87

(H1(x), y) 0.92
(H2(x),y) 0.94

The construction of the map H2 for the case of 2× 2 images is shown
below, the higher-dimensional analogue of this was used for our experi-
ment.
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