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Abstract

It is well known that the Schubert varieties in a flag manifold (important examples of algebraic
varieties), are indexed by elements of a Weyl group; and moreover the containment relations between
these varieties is given by the Bruhat order on the Weyl Group. In [17] the authors characterise the
smoothness of Schubert varieties in Grassmannians by looking at certain hyperplane arrangements

associated to the Weyl group elements, and in [18] they extend this to generalised flag manifolds. In
this report we sketch the link between Schubert varieties, Weyl groups, and Bruhat order; explore the
characterisations mentioned above; and discuss a conjecture of S. Oh and H. Yoo extending their work

to arbitrary Coxeter groups. Our thanks go to Professor Konstanze Rietsch for her help supervising
this project.
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I Introduction
This introductory chapter covers the basics of Coxeter groups and Schubert varieties, and how they
are related via Bruhat ordering. The rest of the report is concerned with characterising smoothness of
Schubert varieties by looking at the geometry of the associated Weyl group. For this reason the geometry
of Coxeter groups is emphasised, and the details of the algebraic geometry of Schubert varieties is only
sketched. In particular we will not actually be using the formal definition of (rational) smoothness,
so we opt instead to define this by an equivalent combinatorial property which is much easier to work
with for our purposes. The last section of this chapter surveys some of the previously known results on
smoothness of Schubert varieties, in particular results about pattern avoidance.

I.1 Coxeter Groups and Weyl Groups

Coxeter groups are groups generated by reflections which act discretely. They arise naturally as the
symmetry groups of regular polyhedra, for example the symmetry group of the regular tetrahedron is S4,
generated by the transpositions (i, i+1) which act as reflections. Another common source of examples is
periodic tilings of Euclidean space, for example the tiling of the plane by squares, equilateral triangles,
or hexagons. Initially we shall introduce Coxeter groups in terms of generators and relations, however it
can be shown using some of the tools mentioned in Section 1C that all discrete reflection groups admit
a presentation of the stated form, and vice versa.

1A Basic Definitions

Definition I.1. A group W is a Coxeter group if it admits a presentation of the form

〈s1, . . . , sk | (sisj)mij = e〉

where S = {s1, . . . , sk} is a (finite) set of generators for W , and mij ∈ {1, 2, . . . ,∞} is symmetric in
its indices and satisfies mij = 1 if and only if i = j. We call the pair (W,S) a Coxeter system for
W , and the generators S are called the simple reflections of (W,S); k is the rank of W . The set of
reflections of the Coxeter system (W,S) is the set R(W,S) of all conjugates of the simple reflections.

Every element in the set R(W,S) (which contains S) has order 2 in W , as one would expect from
a geometric reflection. In general the Coxeter presentation of a Coxeter group W is not unique, and
indeed W may have different Coxeter presentations which may not correspond under automorphisms of
the group, or even have the same number of generators, and this is why we talk about Coxeter systems
instead.

All of the information needed to reconstruct W is given by the numbers mij for i 6= j. It is common to
summarise this data in a graph called the Coxeter diagram (which is closely related to, and sometimes
called, the Dynkin diagram). This graph has vertex set S, and an edge between si and sj if mij > 2.
These edges are labelled with the corresponding value mij , although edge labels 3 are typically omitted.
Note that generators si and sj commute if and only if mij = 2, or equivalently if they are not joined by
an edge in the Coxeter diagram of (W,S).

Definition I.2. Let (W,S) be a Coxeter system, and suppose S = T ∪ T ′ for non-empty disjoint sets
T and T ′, such that if si ∈ T and sj ∈ T ′ then mij = 2 (i.e. the Coxeter diagram of (W,S) is not
connected, and T and T ′ correspond to components of the graph), then W = 〈T 〉 × 〈T ′〉 and we say W
is reducible. If no such decomposition is possible, then W is irreducible.

For any subset T ⊂ S, (〈T 〉, T ) is itself a Coxeter system, we shall write WT = 〈T 〉.

Definition I.3. Let (W,S) be a Coxeter system, and let w ∈ W . We say a finite sequence of letters
w = t1 · · · td is a word representing w, for ti ∈ S. The length function for (W,S) is lS : W 7→ N given
by lS(w) := min{d | w = t1 · · · td}. If S is clear from context we shall just write l(w). If t1 · · · td is a
minimal length word representing w, then we call it reduced.
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For the following chapters there is an important collection of reflections associated to each element
of a Coxeter group.

Definition I.4. Let (W,S) be a Coxeter system, and let t1 · · · td be a fixed reduced word for w ∈W . For
each 1 ≤ i ≤ d, let pi = t1 · · · ti−1titi−1 · · · t1. We call pi an inversion of w, and write inv(w) = {pi}di=1

for the set of inversions of w. We shall see later that inv(w) does not depend on the choice of reduced
word for w (Proposition I.2).

The following is a very important property (in fact characterisation) of Coxeter systems.

Theorem I.1 (Strong Exchange Condition). [5, Theorem 1.4.3] Let (W,S) be a Coxeter system with
w ∈ W . Let t1 · · · td be an expression for w, and let r ∈ R(W,S). If l(rw) < l(w), then there is some
index i such that rw = t1 · · · t̂i · · · td (where a hat denotes that that letter has been deleted).

1B Bruhat Order

Central to our discussion will be a partial ordering of the elements of a Coxeter system related to the
length function and to the reflections of a Coxeter system. Our main source for this section is [5].

Definition I.5. Let (W,S) be a Coxeter system, the Bruhat order on W is defined as follows: let
u, v ∈W and r ∈ R(W,S)

1. We write u
r→ v if u = rv and l(u) < l(v).

2. We write u→ v if u
r→ v for some r ∈ R(W,S).

3. We define u ≤ v if there is a sequence of elements {u1, . . . , uk} such that

u = u1 → u2 → · · · → uk−1 → uk = v.

Given two group elements u, v ∈ W , the Bruhat interval [u, v] is the set of elements x ∈ W such
that u ≤ x ≤ v. Here we shall be interested in the Bruhat ideal [e, w] for some fixed w ∈ W . The
Bruhat graph of w ∈W is the directed graph whose vertex set is [e, w], and whose edges are given by
the relations u→ v defined above. The Bruhat covering graph is the subgraph containing only those
edges u→ v for which l(v)− l(u) = 1.

It is clear that if u ≤ v then l(u) ≤ l(v), and in fact Bruhat intervals are posets graded by the length
function.

Proposition I.1. Let (W,S) be a Coxeter system, w ∈ W , and r ∈ R(W,S), then l(rw) < l(w) if and
only if r ∈ inv(w).

Proof. First let r ∈ inv(w) and let w = t1 · · · td be a reduced word, then by definition there is 1 ≤ i ≤ d
such that r = pi. Hence

rw = t1 · · · ti−1titi−1 · · · t1t1 · · · td = t1 · · · t̂i · · · td

in particular l(rw) ≤ d = l(w).
Conversely suppose r shortens w, so that we can apply the strong exchange condition, which says

that there is and index i such that rw = t1 · · · t̂i · · · td. Multiplying on the right by w−1 = td · · · t1 gives

r = rww−1 = t1 · · · ti−1titi−1 · · · t1 = pi

so r ∈ inv(w). �

This says that if u→ v, then there are words representing u and v such that u is obtained by deleting
a letter in the word for v. The following property of Bruhat order now follows straightforwardly from
the definition.
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Theorem I.2 (Subword Property). [5, Corollary 2.2.3] Let (W,S) be a Coxeter system, and u, v ∈W ,
then then following are equivalent

1. u ≤ v,

2. Every reduced word for v has a subword which is a reduced word for u, and

3. Some reduced word for v has a subword which is a reduced word for u.

Remark I.1. The definition of Bruhat order appears to be asymmetric in that we insist on multiplying
on the left by the reflection r, however an almost identical proof shows that the subword property also
holds for the “right-handed” version of Bruhat order, and so these two definitions coincide. It is also
clear from this characterisation that [e, w] is always a finite set.

1C Geometry

Jacques Tits, who developed much of the classical theory of Coxeter groups in the 1960s, constructed
the so-called reflection representation for an arbitrary Coxeter system. While the definition is very
straightforward (and can be found in most texts on Coxeter groups) we shall omit the details of its
construction here, and focus on its properties. Much of the material in this section can be found in
the first few chapters of [8]. Given any Coxeter system, one can define a symmetric bilinear form B
on a real vector space V whose dimension is the rank of (W,S). The representation makes W act on
V such that the elements of R(W,S) act as orthogonal (with respect to B) reflections with respect to
hyperplanes in V (i.e. codimension 1 linear subspaces). Throughout this report we shall denote this
hyperplane arrangement canonically associated to W by H. Furthermore this representation is faithful,
and the action is discrete in the interior of a cone in V called the Tits cone.

The set of hyperplanes in V associated to W divide up the interior of the Tits cone into regions
called the chambers of (W,S). The hyperplanes corresponding to the generators S define a chamber
which we shall call the fundamental chamber. W acts simply transitively on the chambers, so given
any chamber, we can label it by the unique element of W which maps the fundamental chamber to the
given chamber. This encodes not only the group elements in the geometry, but also the combinatorial
structure, as we shall see below.

Let us suppose conversely that we have a group W acting on, for example, a sphere, Euclidean
space, or hyperbolic space; such that the action is discrete, and is generated by reflections in geodesic
hyperplanes. Take one of the connected components of the space once all these hyperplanes are removed,
and call it the the fundamental chamber. Let S = {s1, . . . , sk} be the reflections in the hyperplanes
which define the fundamental chamber. Then (W,S) is a Coxeter system. Moreover if we construct
the reflection representation of (W,S), although we will not get exactly back to the picture we started
with, the essential geometric features will be unchanged. In particular the “shape” of the chambers
up to taking cross products with copies of Rn, their adjacency relations, number of walls, the angles
at which hyperplanes intersect, and so on. In the particular cases of the examples mentioned at the
start of the paragraph, almost exactly the original picture can be recovered by intersecting the Tits cone
with respectively a sphere, an affine hyperplane of appropriate codimension, or a hyperboloid model of
hyperbolic space.

The main part of this report is engaged in trying to characterise combinatorial properties of (W,S),
and in particular of the Bruhat order, by geometric properties of sub-hyperplane arrangements in the
reflection representation of (W,S), so in the remainder of this section we shall reinterpret the algebraic
and combinatorial definitions given thus far in terms of the geometry of the reflection representation.
As mentioned above the chambers correspond to the group elements, and the set of hyperplanes H

corresponds to the set of reflections R(W,S).

Definition I.6. Let C be a chamber, a wall of C is a hyperplane H ∈ H such that dim(C∩H) = dim(H),
and in this case C ∩ H is called a face of C. Two chambers C and D are adjacent if they share a
common wall (note that we do not exclude the possibility that C = D). A gallery Γ is a sequence of
chambers (C1, . . . , Cd) such that consecutive chambers are adjacent. Γ is said to stutter if Ci = Ci+1 for
some i. We can define a distance function on the set of chambers by letting d(C,D) be the minimum
over the lengths of all galleries joining C and D.

It is clear that any gallery joining chambers C and D must cross every hyperplane which separates
them, and hence d(C,D) is equal to the number of hyperplanes which separate them. What is remarkable
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is the connection between (reduced) words representing w in W , and (minimal) galleries in the reflection
representation.

Lemma I.1. [8, Theorem I.5A] Let C be the fundamental chamber (i.e. the chamber labelled with the
identity), and wC the chamber labelled by w. Let t1, . . . , td ∈ S, then t1 · · · td is a (reduced) word
representing w if and only if

Γ = (C, t1C, t1t2C, . . . , t1 · · · td−1C, t1 · · · td−1tdC)

is a (minimal) gallery joining C = eC and t1 · · · tdC = wC.

This lemma means that d(C,wC) = l(w). Moreover, we can label the faces of C by the elements
of S, by saying C ∩H has label s ∈ S if C and sC are adjacent across H. By simple transitivity, this
labelling can be extended in a well-defined way to the faces of all the chambers. Then if D is a chamber,
D and sD are adjacent, and share a face labelled by s. The inversions of an element w correspond to a
special subset of the hyperplanes H.

Proposition I.2. Let (W,S) be a Coxeter system, and w ∈ W . Let r ∈ R(W,S) and H ∈ H be the
corresponding hyperplane. Let C be the fundamental chamber. Then l(rw) < l(w) if and only if H
separates the chambers C and wC.

Proof. Assume l(rw) < l(w), H necessarily separates wC and rwC, then there are two possibilities:

C,wC |
H

rwC C, rwC |
H

wC

where this notation means that, for example in the first case, H separates C and wC from rwC. In the
second case we are done, so assume we are in the first situation for a contradiction. Let Γ be a minimal
gallery from C to rwC which necessarily crosses H, then reflect the part of the gallery in the half-space
with respect to H which contains rwC to give a new gallery Γ′ of the same length from C to wC. In Γ
there were exactly two chambers which had H as a wall, call these D and D′, so we had

Γ = (C, . . . ,D |
H

D′, . . . , rwC)

In Γ′, D is left fixed, but D′ is reflected in H onto D, so Γ′ stutters at D. One of these D’s can be
deleted to give a new shorter gallery Γ′′ from C to wC. Since we assumed Γ was minimal, this means
l(w) < l(rw), which contradicts our earlier assumption.

Conversely, assume H separates C and wC, and let Γ be a minimal gallery from C to wC which
necessarily crosses H. As above we can construct a gallery Γ′ from C to rwC by reflecting the chambers
beyond H, in H. This gallery stutters, and so can be shortened in the same way to give a shorter gallery
Γ′′ from C to rwC. This means that l(rw) < l(w) as required. �

Together with Proposition I.1, we have characterised the inversions of w as reflections whose corre-
sponding hyperplane separates C and wC in the reflection representation. This also proves the earlier
claim that the set inv(w) does not depend on the choice or reduced word representing w.

Remark I.2. Taking the previous two results together we see that w ∈ W has a reduced word starting
with s ∈ S if and only if s ∈ inv(w). This motivates us to define D(w) = S ∩ inv(w), which (following
[5]) we shall call the descent set of w.

We can also interpret Bruhat ideal geometrically. Let D be a chamber, and say we invert D if we
reflect it in a hyperplane which separates it from the fundamental chamber. Then the Bruhat ideal [e, w]
is the smallest collection of chambers which contains wC and is closed under inversion. It follows easily
that closure of this collection of chambers forms a simply-connected set (consider inverting chambers in
their walls which separate them from C).

1D Finite Coxeter Groups and Weyl Groups

Large classes of Coxeter groups have been classified, starting with the finite Coxeter groups by H.S.M.
Coxeter in 1935. It can be shown that a Coxeter group is finite if and only if the symmetric bilinear form
B mentioned above is positive definite. In this case the reflection representation acts discretely on the
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whole ov V , and stabilises a codimension 1 sphere centred on the origin; for this reason finite Coxeter
groups are often referred to a spherical. There are 4 infinite families, and 4 finite families, each family
is given a letter (its type), and then a subscript number gives the rank of the group. The classification
is given in terms of Coxeter diagrams in Table I.1, which lists all finite irreducible Coxeter groups. All
finite Coxeter groups decompose as a Cartesian product of copies of these groups. Similar tables can be
found for Euclidean and hyperbolic Coxeter groups.

An · · · for n ≥ 1

Bn · · · 4
for n ≥ 2

Dn
· · · for n ≥ 4

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(m)
m

for m = 5 or m ≥ 7

Table I.1: All Coxeter diagrams corresponding to finite irreducible Coxeter systems.

It is a well-known property of finite Coxeter groups that they have a unique longest element, usually
denoted w0. This element is important for studying the group as a whole, in particular inv(w0) = R(W,S)
so #R(W,S) = l(w0). It is also the case that [e, w0] = W ; we shall use this in Chapter III.

One way to study Coxeter groups is by looking at their associated hyperplanes and chambers as
above. A dual perspective is to consider the associated root system. This material is treated in, for
example, [5].

Definition I.7. Let V be a real finite dimensional vector space. A subset Φ is a root system if it
satisfies:

1. Φ is finite, does not contain the zero vector, and spans V ,

2. If c ∈ R is such that α, cα ∈ Φ, then c = ±1, and

3. For each α ∈ Φ, let rα be the orthogonal reflection in α⊥, then rΦ = Φ.

A root system is crystallographic if for any α, β ∈ Φ, rαβ − β is an integer multiple of α.

It is clear that every finite Coxeter group W has an associated root system: take the closure under
the action of W of a set of unit normals of the hyperplanes corresponding to the simple reflections.
Conversely any root system gives rise to a finite Coxeter group denoted W (Φ). If Φ is a crystallographic
root system, then the corresponding Coxeter group is called a Weyl group. Not all finite Coxeter groups
arise as Weyl groups; the types which do are A, B, D, E, F , G.

I.2 Flag Manifolds and Schubert Varieties

This section introduces a completely different theme, that of flag manifolds, which are important examples
of algebraic varieties, and which have close connections with Lie groups. In Section 2B we connect with
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the preceding material by drawing the link between flag manifolds, Weyl groups, and Bruhat order. We
follow [2, Chapters 1 and 2] in the main for this section; see also [22], and [5, Example 1.2.11].

2A Flag Manifolds

Throughout let G be an algebraic group, i.e. a group which has the structure of an algebraic variety
over an algebraically closed field F, which is compatible with the group law and taking inverses. A torus
in G is an algebraic subgroup which is isomorphic to a product of copies of F∗. All maximal tori in G
are conjugate, and so have the same dimension l which we call the rank of G. A Borel subgroup of
G is a maximal connected solvable subgroup B; all Borel subgroups are conjugate, so these too all have
the same dimension. The radical of G, written R(G), is the connected component of the intersection
of all the Borel subgroups of G which contains the identity. We say that G is semi-simple if R(G) is
trivial. Let us assume that G is a semi-simple, simply connected algebraic group, B a Borel subgroup,
and T a maximal torus such that T ⊂ B ⊂ G.

Given such a set-up, we can associate a crystallographic root system to G, and hence a Weyl group.
Let V = g =: Lie(G), on which T acts via the adjoint representation. Write Ψ(T ) = Homalg. gp.(T,F∗)
for the characters of T , then we say χ ∈ Ψ(T ) is a weight in V if

Vχ := {v ∈ V | tv = χ(t)v ∀t ∈ T}

is non-zero. Denote the set of weights for T in V by Φ(T, V ), then this is a crystallographic root system,
thought of as living in Ψ(T )⊗Z R. Let W = W (Φ(T, V )), this is isomorphic to N(T )/T where N(T ) is
the normaliser of T .

Example I.1. The simplest example is to take G = SLn(F), B = Tn(F) the subgroup of upper triangular
matrices, and T the subgroup of diagonal matrices. Then the associated Weyl group is the symmetric
group on n letters, i.e. An−1.

Given G, B, T , and W as above, the associated flag manifold is G/B which we say has type the
type of W (so SLn(F)/Tn(F) has type A). The set of T -fixed points in G/B is {wB | w ∈ W}. The
B-orbits of these points are the double cosets BwB which partition G/B by the basic properties of
double cosets. The sub-varieties of G/B obtained by taking the Zariski closures X(w) := BwB are the
Schubert varieties of G/B, and the BwB’s are called the Schubert cells of G/B.

2B Bruhat Decomposition

As noted above
G/B =

⊔
w∈W

BwB

This is in fact a cell decomposition in the sense of a CW-complex. Moreover, and somewhat astonishingly,
the face or containment relations between Schubert cells is given by the Bruhat order on W , so

BuB ⊂ BwB ⇔ u ≤ w

It follows from this that the Schubert varieties also decompose as

X(w) =
⊔
u≤w

BuB =
⊔

u∈[e,w]

BuB

I.3 Previous Results on Smoothness

A point in a variety is smooth or non-singular if the tangent space of the variety at that point has
the same dimension as the variety itself, otherwise it is a singular point. If X(w) is not smooth, the
singular locus is a non-empty B-stable closed sub-variety of X(w). To decide if a point x ∈ X(w) is
smooth, it suffices to check the T -fixed point in the B-orbit of x. There is a weaker notion of smoothness
called rational smoothness which is defined using the étale cohomology of the variety, we shall omit
the details of the definition because for the remainder of the text we shall use the characterisation of
rational smoothness due to J. B. Carrell and D. Peterson given in Theorem I.3. Smoothness implies
rational smoothness, but not the other way around. The converse does hold in certain cases: type A was
proved by V. V. Deodhar in [10], and types D and E by D. Peterson, published by J. B. Carrell in [9].
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3A Poincaré Polynomial

If we work over C, X(w) is rationally smooth if and only if the singular cohomology ring H∗(X(w))
admits Poincaré duality [16], which in turn implies that the rank generating function of H∗(X(w)) is a
palindromic polynomial called the Poincaré polynomial of X(w). It follows from Bruhat decomposition
that this is equal to the length generating function of the Bruhat ideal of w, [e, w], thus we make the
following definition.

Definition I.8. Let (W,S) be a Coxeter system with length function l. The Poincaré polynomial of
w ∈W is

Pw(q) =
∑
u≤w

ql(u)

So this coincides with the cohomological Poincaré polynomial of the Schubert variety in the case W is a
Weyl group.

We can now give the theorem-definition of rational smoothness mentioned above.

Theorem I.3. [9, Theorem E] Let G be semi-simple, and X(w) a Schubert variety in G/B, then the
following are equivalent:

1. X(w) is rationally smooth,

2. Pw(q) is palindromic, and

3. The Bruhat graph of w is regular of degree l(w), i.e. every vertex is incident to l(w) edges.

3B Pattern Avoidance

In the main body of this report we shall focus on geometric criteria for rational smoothness, but it is worth
recording some nice, explicit, combinatorial criteria based on pattern avoidance in certain cases. Those
cases are the Weyl groups of type A, B, and D. These groups all have geometric realisations (for example
as the symmetry groups of the n-simplex, and the n-cube in the case of type A and B respectively),
but key to pattern avoidance, they can also be interpreted combinatorially. An−1 is isomorphic to the
permutation group on n letters, with the ith generator σi acting as the transposition (i, i + 1). Bn is
isomorphic to the signed permutation group on n letters (i.e. the permutation group when the n letters
have two possible states, positive or negative). The first n − 1 generators we will denote σB1 , . . . , σ

B
n−1,

and they act as the generators in An−1, the final generator σB± has the effect of changing the sign of the
first letter. Dn is an index 2 subgroup of Bn, it is the group of even signed permutations. We will denote
its generators by σD1 , . . . , σ

D
n−1 which as above act as the generators of An−1, and the final generator σD±

has the effect of transposing the first two letters, and changing both of their signs.
It is convenient to write elements of An−1, Bn, and Dn in one-line notation. Take an element σ of

one of these groups, then it is a (signed) permutation of the set {1, 2, . . . , n}. We write σ as a string of
n letters, where the ith letter is {

j if σ(i) = +j

j̄ if σ(i) = −j

Example I.2. The element 21̄3 ∈ B3 is the signed permutation σ such that σ(1) = 2, σ(2) = −1, and
σ(3) = 3. The element 213 ∈ A2 is the permutation σ such that σ(1) = 2, σ(2) = 1, and σ(3) = 3.

Definition I.9. Following the notation of S. Billey, we define the flattening function which takes a fi-
nite sequence of distinct non-zero integers a1 · · · ak and outputs the unique sequence fl(a1 · · · ak) = b1 · · · bk
satisfying:

1. For each i, −k ≤ bi ≤ k is a non-zero integer,

2. For each i, ai and bi have the same sign, and

3. For all i, j, |bi| < |bj | if and only if |ai| < |bj |.

A sequence a1 · · · ak such that fl(a1 · · · ak) = a1 · · · ak is called a pattern. We say that a sequence
a1 · · · ak avoids the pattern b1 · · · bl if there is no sequence of indices 1 ≤ i1 < i2 < · · · < il ≤ k such
that fl(ai1 · · · ail) = b1 · · · bl.

7



Example I.3. Consider the sequence 62̄348̄5̄, fl(62̄348̄5̄) = 51̄236̄4̄. This sequence avoids the pattern
21̄3, but does not avoid the pattern 213̄ since fl(638̄) = 213̄.

For type A, the following theorem was proved by V. Lakshmibai and B. Sandhya.

Theorem I.4. [15, Theorem 2.2] For an element w ∈ An, the Schubert variety X(w) is rationally
smooth if and only if w avoids both 3412 and 4231.

This type of result was generalised to types B and D by S. Billey.

Theorem I.5. [1, Theorems 4.2 and 6.2] For an element w ∈ Bn or Dn, the Schubert variety X(w) is
rationally smooth if and only if w avoids the patterns in Table I.2.

Bad patterns Type

3412 4231 A, B, and D

12̄3̄ 2̄13̄ 21̄3̄ 23̄1̄ 3̄12̄ 3̄2̄1 3̄21̄ 32̄1̄ 32̄1 B

1̄23̄ 123̄ 13̄2̄ 2̄1̄3̄ 3̄2̄1̄ 2̄4̄31 24̄31 3̄4̄1̄2̄ B and D
3̄41̄2 3̄412 341̄2 41̄32̄ 4132̄ 4̄231 4321̄

1̄3̄2̄ 1̄43̄2 2̄13̄4̄ 21̄3̄4̄ 213̄4̄ 2̄3̄14̄ 23̄14̄ 2̄4̄31̄ D
2̄43̄1̄ 243̄1̄ 24̄31̄ 2̄43̄1 31̄2̄4̄ 312̄4̄ 32̄14̄ 32̄4̄1
3̄4̄12̄ 34̄1̄2̄ 34̄12̄ 3̄4̄2̄1 342̄1̄ 3̄42̄1 34̄2̄1 4̄1̄3̄2
4̄1̄32̄ 4̄132̄ 41̄3̄2 4̄13̄2 42̄13̄ 42̄3̄1̄ 4̄2̄3̄1 4̄231̄
42̄3̄1 43̄1̄2̄ 43̄1̄2 4̄3̄12 43̄12̄ 43̄2̄1

Table I.2: Bad patterns for the three types of groups discussed.

S. Billey and A. Postnikov later generalised the whole pattern avoidance approach by restating these
results uniformly in a Lie theoretic way in terms of patterns in root sub-systems with star shaped Coxeter
diagrams. They thus attained smoothness results in the sporadic types, and were able to characterise
other classes of group elements in terms of pattern avoidance; for details see [3]. For an in-depth survey
of results on the smoothness of Schubert varieties up to the year 2000 (which does not include [3], or the
results in the rest of this report), consult [2].
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II Smoothness and Hyperplane
Arrangements

In this chapter we discuss the work of S. Oh, A. Postnikov, and H. Yoo in [17] and [18]. Their result
is as follows: fix a Weyl group W with Coxeter system (W,S), and let w ∈ W . Define the inversion
arrangement of w to be the the sub-hyperplane arrangement of H whose hyperplanes correspond to
the set of inversions of w, inv(w) ⊂ R(W,S). We denote this hyperplane arrangement Aw and consider
the regions V \Aw. Let r0 be the region which contains the fundamental chamber of H, C; then just as
before we can define a distance function d of the regions, so that d(r0, r) is the number of hyperplanes
in Aw which separate the region r from r0. We then define the polynomial Rw(q) to be the generating
function which counts the regions in Aw according to their distance from r0, i.e.

Rw(q) =
∑
r

qd(r0,r)

where the sum is over all the regions of Aw. The theorem is then:

Theorem II.1. [17, 18] Let X(w) be a Schubert variety with w ∈ W some Weyl group. X(w) is
rationally smooth if and only if Pw(q) = Rw(q).

The work of V. V. Doedhar and D. Peterson mentioned previously means that this condition in fact
characterises smoothness in types A, D and E. Since Weyl groups are finite, Aw is a central arrangement
(i.e. all of the hyperplanes pass through the origin), so Rw(q) is always palindromic. Thus Theorem I.3
immediately gives us that if X(w) is not rationally smooth, then Pw(q) 6= Rw(q), so we need only prove
one direction. The first section below focuses on type A, and the other types are treated in the second
section. In all cases, the key is finding a way to factorise the polynomials and showing that they share
the same factors.

II.1 Smoothness in Type A

Recall that An−1
∼= Sn, throughout this section elements w ∈ Sn will be written in one-line notation.

There is a straightforward way to characterise the inversions of a permutation written in one-line no-
tation. Note that the reflections in Sn are exactly the transpositions. The transposition which swaps
1 ≤ i < j ≤ n is an inversion of w if and only if w(i) > w(j), or in other words fl(w(i), w(j)) = 21.

1A Graphical Hyperplane Arrangements

The inversion arrangement of w turns out to be a special kind of hyperplane arrangement called a
graphical arrangement, for a thorough treatment of these, consult [19, Section 2.4].

Definition II.1. Let Γ be a graph with vertex set {1, . . . , n}, then the graphical hyperplane ar-
rangement of Γ in Rn, AΓ, consists of the hyperplanes xi − xj = 0 for all edges (i, j) in Γ.

Let Γw be the graph with edge (i, j) if and only if the transposition swapping i and j is an inversion
of w. Then we claim that the restriction of AΓw

to the hyperplane orthogonal to the vector (1, 1, . . . , 1)
in Rn coincides with Aw; in particular the region generating functions of the two arrangements coincide.
Indeed this follows from the fact that the hyperplane arrangement H of An−1 (which lives in Rn−1) is
exactly the restriction to the hyperplane orthogonal to the vector (1, 1, . . . , 1) in Rn, of the hyperplane
arrangement consisting of all hyperplanes xi − xj = 0 for 1 ≤ i < j ≤ n.

There is a bijection between the regions of the graphical arrangement of a graph Γ and acyclic
orientations of Γ (i.e. an orientation such that Γ contains no oriented cycles). A region r is defined by
inequalities of the form xi < xj for 1 ≤ i, j ≤ n, associate to r the orientation O in which i→ j for each
edge (i, j). It can be shown that this orientation is acyclic, and every acyclic orientation gives rise to a
region [19, Lemma 2.93]. Moreover the distance d(r0, r) can also be read off from O.
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Definition II.2. Let Γ be a graph on the vertex set {1, . . . , n}, and O an acyclic orientation of Γ. Define
the descent number of O to be

des(O) = #{i→ j | i > j}

i.e. the number of descent edges in O. Now define the polynomial

RΓ(q) =
∑
O

qdes(O)

summed over all acyclic orientations of Γ.

The region r0 in Aw is defined by xi < xj for all edges (i, j) of Γw with i < j, so it is clear that
if the corresponding acyclic orientation is O0, then des(O0) = 0. Now let r be an arbitrary region,
with d(r0, r) = d, so there are d hyperplanes separating r0 and r. This corresponds to swapping the
region-defining inequality xi < xj for xi > xj when (i, j) an edge of Γw with i < j. This swaps the
orientation of d edges in O0 to give the acyclic orientation O corresponding to r, and thus contributing
d to des(O). Hence des(O) = d(r0, r) and

RΓw
(q) = Rw(q)

for all permutations w.
In order to prove equality with the Poincaré polynomial Pw(q) we will make use of the following

result by V. Gasharov.

Theorem II.2. [11, Theorem 1.1] Let w ∈ Sn, then Pw(q) factors into polynomials of the form
1 + q + · · ·+ qr if and only if w avoids the two patterns 4231 and 3412.

We define the notation [e + 1]q = 1−qe+1

1−q = 1 + q + · · · + qe for e a non-negative integer, this is the

q-number corresponding to e. Because of this theorem we want to be able to factor RΓ(q), we can do
this inductively using the following result.

Lemma II.1. [6, Theorem 2.4] Let Γ be a graph on the set {1, . . . , n}, and suppose there is a vertex v
which satisfies:

1. The set of neighbours of v forms a complete subgraph of Γ, and

2. Either

(a) all neighbours of v are less than v, or

(b) all neighbours of v are greater than v

in the usual ordering on {1, . . . , n}.

Then RΓ(q) = [e+ 1]qRΓ\v(q), where e is the number of neighbours of v, and Γ\v is the graph obtained
by removing v and all its incident edges from Γ.

Proof. Let O be a fixed acyclic orientation of Γ\v, we want to count all the ways of extending it to an
acyclic orientation on Γ. The vertex v has the set N ⊂ {1, . . . , n} of e neighbours in Γ\v which form a
a complete subgraph Γ|N ' Ke.

There are e+ 1 ways to extend an acyclic orientation on Ke to an acyclic orientation on Ke+1 which
is easily seen by induction. Let O be the acyclic orientation on Ke, then necessarily Ke has a sink vertex,
call this t. If we extend O to O′ on Ke+1 such that t→ v, then t is no longer a sink, and so v must be a
sink, and so O′ is unique. Otherwise t remains a sink in O′. Remove t from Ke and Ke+1 to get K ′e−1

and K ′e, and now the question is how many ways are there to extend and acyclic orientation on K ′e−1 to
one on K ′e when v is added. By induction this is e, so in total we have e+ 1 ways to extend O.

In fact this shows that for each j = 0, . . . , e there is a unique extension of O to an acyclic orientation
O′ so that there are exactly j edges oriented towards v. All vertices in N are less than v or greater than
v; in either case we have ∑

O′

qdes(O′) = [e+ 1]qq
des(O)

where the sum is over all extensions O′ of O. The term qjqdes(O) corresponds to the extension of O with
j new descent edges whence the claim. �
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Thus in order to factorise RΓw
(q) we want to show that we can always find a vertex v with the

properties in the above lemma. In fact to completely factorise the polynomial, we want to find a
sequence containing all of the vertices such that the graph we get by restricting to any truncation of this
sequence always has a vertex (the last one in the truncated sequence) with the above properties. We
construct such a sequence in the next section.

1B Perfect Elimination Orderings

Definition II.3. A perfect elimination ordering of Γ is an ordering of its vertices v1 < · · · < vn,
such that for any vertex vi, its neighbours which are less than it define a complete subgraph of Γ. Given
such an ordering, let ei be the number of neighbours of vi among v1, . . . , vi−1; the numbers e1, . . . , en
are the exponents of Γ, which correspond to e in Lemma II.1.

We say that a perfect elimination ordering of Γ is nice if for any vertex vi, its neighbours which
are less than it in the ordering are either all less than, or all greater than vi in the usual ordering on
{1, . . . , n}.

It is clear that if v1, . . . , vn is a nice perfect elimination ordering for Γ, vn satisfies the conditions
of Lemma II.1, and moreover v1, . . . , vn−1 is a nice perfect elimination ordering for Γ\vn. Hence the
following.

Corollary II.1. Let Γ be a graph with a nice perfect elimination ordering, whose exponents are e1, . . . , en,
then

RΓ(q) = [e1 + 1]q · · · [en + 1]q

From this it is clear that if Γ possesses a nice perfect elimination ordering, the exponents do not
depend on which nice ordering we take. In fact the ordering does not have to be nice in order to
calculate the exponents (this can be proved in greater generality, see Lemma III.2).

Lemma II.2. [17, Proposition 12] The set of exponents of Γ does not depend on the choice of perfect
elimination ordering.

Proof. Let χΓ(t) be the chromatic polynomial of Γ, i.e. for m ∈ N, χΓ(m) is the number of colourings
of the vertices of Γ such that no two neighbouring vertices have the same colour. Let v1, . . . , vn be a
perfect elimination ordering of Γ with exponents e1, . . . , en, then we claim

χΓ(t) = (t− e1) · · · (t− en)

Indeed it is sufficient to prove it for an arbitrary m ∈ N. We count the number of colourings: the vertex

v1 can be coloured in m
e1=0
= m − e1 colours, vertex v2 in m − e2 colours, and in general the vertex vi

can be coloured in m − ei colours since the ei preceding vertices have already been coloured using ei
different colours.

It is clear that χΓ(t) is independent of the choice of ordering, hence so is the set {e1, . . . , en}. �

Let Γw be the inversion graph for w ∈ Sn, we shall now construct a nice perfect elimination ordering
of its vertices. We want to represent w using a rook diagram Dw, this is an n×n chess board on which
we place n non-attacking rooks at positions (w(i), i) for each 1 ≤ i ≤ n, where (x, y) corresponds to the
xth box down and the yth box across. This is the shape of the corresponding permutation matrix. The
rook diagrams for the two bad patterns in type A (see Theorem I.4) are shown in Figure II.1a.

The graph Γw contains an edge (i, j) with i < j whenever the rook in the ith column of Dw is south-
west of the rook in the jth column. Then we say that this pair of rooks forms an inversion. Let a be
the rook in the nth column of Dw, and b the rook in the nth row. We use a and b to divide up Dw into
four (possibly empty) regions A, B, C, and D, see Figure II.1b. If w(n) = n we take a = b.

Lemma II.3. [17, Lemma 17] Let w be a rationally smooth permutation, then its rook diagram Dw has
the properties:

1. Each pair of rooks in region D forms an inversion, and

2. At least one of the sectors B or C contains no rooks.

If not, Dw would contain a sub-diagram which looks like one of those in Figure II.1a, and so w would
contain the corresponding bad pattern.
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(a) Rook diagrams representing the permutations
3412 and 4231 in S4.

(b) Rook diagram decomposition.

Figure II.1

We shall use this to construct a nice perfect elimination ordering of Γw recursively when w is rationally
smooth. If w is rationally smooth, then Dw satisfies the two properties in Lemma II.3. Let us assume
that in property 2, it is region B which is empty, the case C is empty is analogous. Let va = n and vb
be the vertices of Γw corresponding to rooks a and b. The neighbours of vb are either the vertices whose
rooks are in region D which we shall call v1, . . . , vk, or va. Hence vb is less than all of its neighbours
in the usual ordering on {1, . . . , n}. Moreover, every pair of neighbours of vb forms an inversion, so the
neighbours of vb form a complete subgraph of Γw. This is illustrated by Figure II.2 (taking C empty
instead, we would have that va is greater than all of its neighbours, which form a complete subgraph).

Figure II.2: A possible rook diagram for a rationally smooth permutation w, in which the region B is
empty. We are not concerned with the contents of A and C.

Using ≺ to denote the ordering we are constructing, this tells us we need to take v1, . . . , vk, va ≺ vb
(respectively take v1, . . . , vk, vb ≺ va). Let w′ be the permutation w(1) · · ·w(vb−1)w(vb+1) · · ·w(n), and
Dw′ the corresponding rook diagram (i.e. with the vb

th column and w(vb)
th row removed from Dw). w′ is

clearly still a rationally smooth permutation (since it will still avoid the bad patterns), so we can apply
the same procedure as above, and thus recursively construct a series of relations among the vertices.
Then take any ordering which satisfies these relations (an ordering will always exist), and this will be a
nice perfect elimination ordering on Γw.

In fact we can also calculate the exponents using Lemma II.1. If region B is empty, then when we
remove vb we get the factor [e + 1]q where e = n − vb is the number of neighbours of vb as in Lemma
II.1. If region C is empty, then we get the same factor by removing va, but with e = n− va.

1C Factorisation of Rw(q) and the Proof of the Theorem

By showing that Γw has a nice perfect elimination ordering when w is smooth, we can factorise the
polynomial RΓ(q) using Corollary II.1 as

RΓ(q) = [e1 + 1]q · · · [en + 1]q

where e1, . . . , en are the exponents of Γw. With this recursively defined ordering, the exponents take a
long time to compute. However Lemma II.2 tells us that we can use any perfect elimination ordering
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to compute the exponents, it does not have to be a nice one. Here we shall give a perfect elimination
ordering with which we can easily compute the exponents.

Definition II.4. Let w ∈ Sn be a permutation, r ∈ {1, . . . , n} is a record position for w if

w(r) > max{w(1), . . . , w(r − 1)}.

In the one-line notation, the record positions are the positions of the left-to-right maxima. Then we call
w(r) a record.

Lemma II.4. [17, Lemma 22] Let w ∈ Sn be a rationally smooth permutation with record positions
r1 = 1 < r2 < · · · < rs, then the ordering

[rs, n], [rs−1, rs − 1], . . . , [r2, r3 − 1], [r1, r2 − 1]

is a perfect elimination ordering of Γw, where [a, b] denotes {a, a+1, . . . , b−1, b} with the usual ordering.

The proof is not hard, but quite technical so we omit it. Given this ordering, the exponents can
readily be calculated as follows. For i ∈ {1, . . . , n}, let r and r′ be the record positions of w such that
r ≤ i < r′, and there are no record positions between r and r′ (let r′ = +∞ if there are no record
positions greater than i). Then

ei = #{j | r ≤ j < i, w(j) > w(i)}+ #{k | r′ ≤ k ≤ n,w(k) < w(i)} (II.1)

Indeed, i ∈ [r, r′− 1]; an index j contributes to ei if w(j) < w(i) (so the vertex j is a neighbour of i),
and j < i in the usual ordering. If j ∈ [r, r′ − 1] it contributes to the first term, otherwise it must be in
[r′, r′′ − 1], . . . , [r2, r3 − 1], [r1, r2 − 1], in which case it contributes to the second term (r′′ being the next
record position after r′). We can now prove the main theorem of this section.

Theorem II.3. [17, Theorem 7] Let X(w) be a Schubert variety with w ∈ Sn. X(w) is rationally smooth
if and only if Pw(q) = Rw(q).

Proof. As discussed at the start of this chapter, we need only prove that if w is smooth, then we have
the equality Pw(q) = Rw(q). Let w be smooth, and let Aw be the corresponding inversion hyperplane
arrangement, then Rw(q) is the region generating function of Aw. This is in fact a graphical hyperplane
arrangement, so let Γw be the inversion graph of w. Then we have the equality Rw(q) = RΓw

(q) where
the second is the generating function of the acyclic orientations on Γw. We have constructed a nice
perfect elimination ordering of Γw, so by Corollary II.1, RΓw(q) factors as a product of factors [ei + 1]q,
where the the exponents can be calculated using (II.1).

Finally we use the result of V. Gasharov (Theorem II.2) which says that Pw(q) also factorises, with
factors of the same form. At the end of the paper ([11, Remark 2.8]), V. Gasharov remarks that V.
Reiner pointed out that the exponents in Pw(q) are exactly those which we calculated recursively (i.e.
n− va or n− vb in the two cases). Hence Pw(q) = Rw(q) for w rationally smooth. �

Remark II.1. Note that we have not constructed an explicit bijection between the regions of Aw and
elements of the Bruhat ideal [e, w]. Indeed we shall see in general that the regions of Aw do not
correspond geometrically to the chambers in the hyperplane arrangement H which are labelled by the
elements in [e, w] (see Example III.2).

Example II.1. Let us illustrate the main ideas in the proof with an example. Let w = 65174832 ∈ S8

which we can see by observation contains neither of the patterns 3421 or 4231, so X(w) is rationally
smooth. Either by applying Gasharov’s theorem, or as we did, direct computation using a computer [20,
Section 8], we find that the Poincaré polynomial of w is

Pw(q) = [0 + 1]q[1 + 1]q[2 + 1]3q[3 + 1]2q[4 + 1]q

so the set of exponents of w should be {0, 1, 2, 2, 2, 3, 3, 4}.
We shall now recursively compute a nice perfect elimination ordering of {1, . . . , 8} for w. Figure II.3

shows the rook diagrams at each stage with arrows indicating the rook we remove; the order relations
we get are as follows:
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¬ 7, 8 ≺ 6

 5, 7, 8 ≺ 4

® 1, 2, 5, 7 ≺ 8

¯ 1, 2, 5 ≺ 7

° 1, 2 ≺ 5

± 2, 3 ≺ 1

² 3 ≺ 2

These relations force the relative ordering

3 ≺ 2 ≺ 1 ≺ 5 ≺ 7 ≺ 8 ≺ 4, 6

but we have free choice of the order of 4 and 6; either order will give a nice perfect elimination ordering.
We shall take 4 ≺ 6.

Figure II.3: The rook diagrams for recursively computing a nice perfect elimination ordering for w.

We can now draw the inversion graph Γw with this ordering in mind, and quickly check visually that
indeed given any vertex, all of its neighbours which are less than it form a complete subgraph, and they
are either all greater, or all less than the given vertex in the usual ordering, see Figure II.4.

Finally we want to calculate the exponents, and hence factor Rw(q). We shall use the simple perfect
elimination based on the record positions. The record positions for w = 65174832 are 1, 4, and 6, with
records 6, 7 and 8 respectively. Hence a perfect elimination ordering is given by

6, 7, 8, 4, 5, 1, 2, 3

from which we can calculate the exponents using (II.1).

e1 = 0 + 3 = 3 e2 = 1 + 3 = 4 e3 = 2 + 0 = 2 e4 = 0 + 2 = 2

e5 = 1 + 2 = 3 e6 = 0 + 0 = 0 e7 = 1 + 0 = 1 e8 = 2 + 0 = 2

This gives the same set of exponents {0, 1, 2, 2, 2, 3, 3, 4} and factorisation as with Pw(q)

Rw(q) = [0 + 1]q[1 + 1]q[2 + 1]3q[3 + 1]2q[4 + 1]q

= 1 + 7q + 27q2 + 74q3 + 159q4 + 282q5 + 425q6 + 554q7 + 631q8

+ 631q9 + 554q10 + 425q11 + 282q12 + 159q13 + 74q14 + 27q15 + 7q16 + q17

Figure II.4: The inversion graph for w, with the vertices arrange in the nice perfect elimination ordering
constructed above.
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II.2 Smoothness in other Types

The proofs for types B = C and D follow the same outline as the one for type A, and rely on the
combinatorial description of these groups which we introduced in Section I.3B. We define an inversion
hyperplane arrangement associated to and element w, and define Rw(q) to be the region counting polyno-
mial. We show the equivalence of this polynomial with the polynomial counting certain types of acyclic
orientations on the inversion graph of w, which is analogous to Γw for type A. We then factorise Rw(q)
and use results analogous to the theorem of V. Gasharov which were proved by S. Billey in [1]. Because
of these similarities, we shall just sketch the relevant definitions and results, for details the interested
reader should consult [18], or H. Yoo’s thesis [24].

The remaining types are E, F , and G. G2 is simple, we shall prove the result uniformly for all
dihedral groups in the next chapter, see Example III.2. The authors of [18] claim to have checked F4

with a computer. For type E the authors show that these cases can be proved uniformly with type A
and D, once a certain decomposition property of elements in A and D is shown to hold true for type E
as well; again they did this using a computer, see [18, Propositions 8 and 13]. They do not give details
of these computer checks, so we shall forego saying anything else about these cases.

2A Type B

We shall follow the notation and exposition in [24]. Let SBn be the Weyl group of type B and rank n, and
recall that it is the group of signed permutations. In particular it is the subgroup of the permutations
of [±n] := {−n, . . . ,−1, 1, . . . , n} such that w(−a) = −w(a) for all w ∈ SBn (we also define the notation
[n] := {1, . . . , n}). Table I.2 summarises the patterns which w avoids if and only if it is rationally smooth.
We can characterise the set inv(w) combinatorially, as with elements of Sn.

inv(w) = {(i, j) ∈ [n]× [n] | i < j, w(i) > w(j)} ∪ {(i, j) ∈ [n]× [n] | i < j, w(−i) > w(j)} (II.2)

Definition II.5. Let w ∈ SBn , the inversion graph of w, ΓBw has vertex set [±n], with single edges
{(i, j) ∈ [±n]× [±n] | i < j, i 6= −j, w(i) > w(j)}, and double edges {(−i, i) | i ∈ [n], w(−i) > w(i)}.

The reason we have double edges, is because each single edge (i, j) is paired with another edge (−j,−i)
in ΓBw , so we shall always consider pairs of edges. We use these pairs to define the inversion arrangement
associated to w.

Definition II.6. Let w ∈ SBn , the inversion hyperplane arrangement AB
w associated to W is the

hyperplane arrangement in Rn with hyperplanes:

• xi − xj = 0 for all pairs of edges {(−j,−i), (i, j)} in ΓBw where 0 < i < j, and

• x−i + xj = 0 for all pairs of edges {(−j,−i), (i, j)} in ΓBw where i < 0 < j.

Definition II.7. An orientation on ΓBw is asymmetric if the direction of (i, j) and (−j,−i) are the
same, then the direction of the pair {(−j,−i), (i, j)} determines which half-space of the corresponding
hyperplane a point is in. Then just as in the case of Sn, the regions of AB

w are in bijection with the
acyclic antisymmetric orientations on ΓBw .

As before, AB
w is a sub-hyperplane arrangement of the hyperplane arrangement H associated to Bn.

Let r0 be the region of AB
w induced by the fundamental chamber in H. Then we define

Rw(q) =
∑
r

qd(r0,r)

summed over all regions of AB
w .

Definition II.8. Let O be an acyclic asymmetric orientation of ΓBw , and define desB(O) to be the
number of pairs {(−j,−i), (i, j)} oriented as −j → −i and i → j in O, where i > j, i.e. the number of
descent edge pairs.

As before we have the equality

Rw(q) =
∑
O

qdesB(O)
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where the sum is over all acyclic antisymmetric orientations of AB
w .

The last big piece of the puzzle is the factorisation of Pw(q), analogous to Gasharov’s theorem. Recall
the notation introduced for the generators of SBn in Section I.I.3.

Theorem II.4. [1, Theorem 3.3] Let w ∈ SBn and assume w(d) = ±n and w(n) = ±e. Then Pw(q)
factors in the form

Pw(q) = Pw′(q)[µ+ 1]q

under the following circumstances:

1. If w(d) = n and w(d) > w(d+ 1) > · · · > w(n), then w′ = wσBd · · ·σBn−1, and µ = n− d.

2. If w−1 is in the previous situation, then w′ = σBn−1 · · ·σBe+1σ
B
e w and µ = n− e.

3. If each w(i) is negative and w(1) > w(2) > · · · > w(d − 1) > w(d + 1) > · · · > w(n), then
w′ = wσBd−1 · · ·σB1 σB±σB1 · · ·σBn−1 and µ = d+ n− 1.

4. If w−1 is in the previous situation, then w′ = σBn−1 · · ·σB1 σB±σB1 · · ·σBe−1w and µ = e+ n− 1.

5. If each w(i) is positive except for w(d) = n̄ and w(1) > w(2) > · · · > w(d), then w′ = wσBd−1 · · ·σB1 σB±
and µ = d.

Moreover, if w is rationally smooth then it falls into one of the above circumstances, so Pw(q) factors
into q-numbers.

S. Oh and H. Yoo were able to factorise Rw(q) by a careful analysis of each of the above cases, for
details, see [24, Section 1.3.5].

2B Type D

We write SDn for the Weyl group of type D and rank n. For w ∈ SDn , the set of inversions has exactly
the same characterisation as in type B, see (II.2). The inversion graph ΓDw only has the single edges
{(i, j) ∈ [±n] × [±n] | i < j, i 6= −j, w(i) > w(j)}, but these still come in pairs, and so the inversion
hyperplane arrangement is defined in the same way. Again we consider acyclic asymmetric orientations
of ΓDw , and can conclude that

Rw(q) =
∑
O

qdesD(O)

where desD(O) has the same definition as for type B. The factorisation of Pw(q) is again due to S. Billey.

Theorem II.5. [1, Theorem 6.3] Let w ∈ SDn and assume w(d) = ±n and w(n) = ±e. Then Pw(q)
factors in the form

Pw(q) = Pw′(q)[µ+ 1]q

under the following circumstances:

1. if w = w0 is the longest element in SDn , i.e. w = ±12̄ · · · n̄, then

Pw0
(q) =

n−1∏
k=1

(1 + q + · · ·+ qk−1 + 2qk + qk+1 + · · ·+ q2k)

2. If w(d) = n and w(d) > w(d+ 1) > · · · > w(n), then w′ = wσDd · · ·σDn−1, and µ = n− d.

3. If w−1 is in the previous situation, then w′ = σDn−1 · · ·σDe+1σ
D
e w and µ = n− e.

4. If w(1) < 0 and w(d) = n̄ are the only two negatives and −w(1) > w(2) > · · · > w(d), then w′ =
wσDd−1 · · ·σD2 σD± and µ = d− 1.

5. If n̄ and 1̄ are the only two negatives in the one-line notation and w(1) > · · · > w(d), then
w′ = wσDd−1 · · ·σD2 σD1 and µ = d− 1.

Moreover, if w is rationally smooth then it falls into one of the above circumstances. Since it is well-
known that Pw0

(q) factors into q-numbers (see Theorem III.1), Pw(q) factors into q-numbers for all
rationally smooth w.

Again the factorisation of Rw(q) is done by a careful analysis of these cases.
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III Generalisation to other Coxeter
Groups

At the end of [18] the authors make the following conjecture:

Conjecture. Let W be any Coxeter group. Then [e, w] is palindromic if and only if Pw(q) = Rw(q).

In this generality we no longer have Schubert varieties, nevertheless we shall call w ∈ W smooth
if [e, w] is palindromic (i.e. Pw(q) is palindromic). It is worth noting that there are flag manifolds and
Schubert varieties associated to so-called affine Weyl groups, which are Euclidean Coxeter groups and
hence infinite. Theorem I.3 holds in these cases, and work of S. Billey and A. Crites [4] generalised
the pattern avoidance in type A. The conjecture fails even for many small examples in infinite Coxeter
groups.

Example III.1. Let W = B̃2 be the affine Coxeter group with Coxeter diagram

44
s1s2 s3

which is the symmetry group of the tiling of the plane by squares. Let w = s1s2s3, using the geometric
interpretation both of the Bruhat ideal [e, w] and the inversion set inv(w) we can represent these as in
Figure III.1. From this we can easily read off that

Pw(q) = 1 + 3q + 3q2 + q3

which is palindromic, however
Rw(q) = 1 + 3q + 2q2 + q3

which not only does not equal Pw(q), but is not even palindromic as was always the case for the Weyl
groups discussed previously.

Figure III.1: The Bruhat ideal and inversion arrangement of w. The fundamental chamber is black, the
chamber corresponding to w is red, and the other chambers in [e, w] are coloured blue. The inversion
arrangement for w is highlighted in green.

In this chapter we shall be exploring the cases (principally when W is finite) in which the conjecture
does hold; and in the cases when it fails, studying the Poincaré polynomial geometrically to find other
geometric quantities which characterise smoothness, in the place of Rw(q). A lot of the contents is based
on the computation of examples, and so this chapter is more speculative than the previous ones.
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III.1 Finite Coxeter Groups

Let us summarise what we have seen so far. The finite irreducible Coxeter groups have been classified,
and these are listed in Table I.1. Every finite Coxeter group is a Cartesian product of copies of these
groups. The classification defines eight types, six types of Weyl groups to which we can associate flag
manifolds and Schubert varieties: A, B = C, D, E, F , G; along with types H and I which do not
have an associated crystallographic root system. The previous chapter was concerned with proving the
conjecture for the irreducible Weyl groups, to what extend does it extend to all finite Coxeter groups?
In the counter example above we saw that the number of regions in the inversion arrangement was not
equal to #[e, w]. The cases when we do have equality for finite Coxeter groups was characterised by A.
Hultman in [13, Theorem 3.2].

1A Factorising Pw(q)

Before looking at types H and I, we shall state a lemma which is straightforward, but which is never-
theless the key behind the factorisation of the Poincaré polynomial in all cases.

Lemma III.1. Let (W,S) be a fixed Coxeter system. For a subset Y of W , write Y (q) =
∑
w∈Y q

l(w)

for the length generating function of Y (so [e, w](q) = Pw(q) is the usual Poincaré polynomial). Suppose
for a given subset Y ⊂ W , there exist subsets U, V ⊂ W such that for any w ∈ Y , there are unique
elements u ∈ U and v ∈ V such that w = uv and l(w) = l(u) + l(v). Moreover assume U and V have
the property that uv ∈ Y for any u ∈ U and v ∈ V . Then

Y (q) = U(q)V (q)

Our first application of this is to consider how one generalises the conjecture from irreducible Coxeter
groups to reducible Coxeter groups. We shall say that (W,S) has the q-factorisation property if the
following holds:

For all w ∈W , if Pw(q) is palindromic, then it factors completely into a product of q-numbers.

We have seen that if W has type A, B = C or D, then it has the q-factorisation property, and we shall
see that types G and I also have this property. We have also confirmed that H3 satisfies the property
using a computer, see [20, Section 12.3].

Proposition III.1. Let (W,S) be a Coxeter system, with irreducible factors W1, . . . ,Wk. Assume the
conjecture holds for all of the irreducible factors.

1. If w1 ∈W1, . . . , wk ∈Wk is a sequence of elements such that either they are all smooth, or an odd
number are non-smooth, and the rest are smooth; then the conjecture holds for w1 · · ·wk ∈W .

2. If W has the q-factorisation property, then the conjecture holds.

Proof. We shall not actually use the fact that the factors are irreducible, so it is sufficient to show that
if the conjecture holds for Coxeter systems (W,S) and (W ′, S), then it holds for (W ×W ′, S ∪ S′). Let
w ∈W ×W ′. Since the sets S and S′ commute in W ×W ′ we can find a reduced word for w of the form
w = t1 · · · trt′1 · · · t′s where u = t1 · · · tr ∈ W and v = t′1 · · · t′s ∈ W ′. By the subword property of Bruhat
order (Theorem I.2), it is clear that the sets Y = [e, w], U = [e, u] and V = [e, v] satisfy the conditions
of Lemma III.1, and hence

Pw(q) = Pu(q)Pv(q)

On the other had, if H is the hyperplane arrangement associated to W and H′ is the hyperplane
arrangement associated to W ′, then the hyperplane arrangement of W ×W ′ is the product space H×H′.
It is a straightforward geometric exercise to see then that

Rw(q) = Ru(q)Rv(q)

The only impediment to the conjecture holding for w ∈W×W ′ is if Pu(q) and Pv(q) are not palindromic,
but their product is palindromic. In this case w is smooth but we may not have that Pw(q) = Rw(q).
This problem is precluded by the hypotheses of (1). In case (2), Pw(q) being palindromic means it factors
into q-numbers, each of which factorises into a product of irreducible cyclotomic polynomials, which it
is easily seen are always palindromic, so again the problem cannot arise1. �

1Our thanks to the first year LSGNT number theorist for this observation.
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Question 1. Do all Coxeter groups have the q-factorisation property?

In type A we were able to show that for smooth elements, the factorisation into q-numbers was
unique. This holds in general.

Lemma III.2. Let P (q) be a polynomial which factors completely into q-numbers as P (q) =
∏k
i=1[ai]q,

then the (multi)set {a1, . . . , ak} is unique.

Proof. Suppose P (q) has another factorisation P (q) =
∏l
i=1[a′i]q. We can write

P (q) =

k∏
i=1

∏
1<d|ai

Φd(q) =

l∏
i=1

∏
1<d′|a′i

Φd′(q)

where Φd(q) is the dth cyclotomic polynomial which is irreducible. Suppose ai is a maximal element
with respect to divisibility in {ai}ki=1, then it is clear that there must be some index j such that a′j = ai.

Repeating this argument with P (q)/[ai]q we see that k = l and {ai}ki=1 = {a′j}lj=i as (multi)sets2. �

Recall that for a finite Coxeter group, we denote the unique longest element by w0, and that
[e, w0] = W . C. Chevalley was interested in enumerating Weyl groups by their length, and was able
to factorise W (q) = Pw0

(q). This was generalised to all finite Coxeter groups by L. Solomon.

Theorem III.1. [14, Theorem 3.15] Let (W,S) be a finite irreducible Coxeter system of rank n, then
there are positive integers e1, . . . , en such that Pw0

(q) =
∏n
i=1[ei + 1]q.

The exponents e1, . . . , en have been calculated for all finite irreducible Coxeter groups, see [5, Ap-
pendix A1]. Since w0 is always smooth (indeed w 7→ w0w is an anti-automorphism of Bruhat order, see
[5, Proposition 2.3.4]), we can generalise this factorisation to all finite Coxeter groups using Proposition
III.1; the set of exponents of a reducible finite Coxeter group W is the union of the sets of exponents
for its irreducible factors. We shall not give a proof of this theorem, however we shall state an impor-
tant decomposition result used in the proof. We shall use a variant of this result to factorise Poincaré
polynomials for arbitrary W later.

Proposition III.2 (Parabolic Decomposition I). [14, Proposition 1.10c] Let (W,S) be a Coxeter system.
Recall for any subset T ⊂ S, we write WT = 〈T 〉, and define WT := {w ∈W | l(sw) > l(w) for all s ∈ T}.
Given any w ∈ W , for any T ⊂ S there is a unique u ∈ WT and v ∈ WT such that w = uv and
l(w) = l(u) + l(v). Moreover u is the unique element of smallest length in the coset wWT .

1B Types H and I

Proposition III.1 motivates us to look at the remaining irreducible finite Coxeter groups, types H and I.

Example III.2. Consider the Coxeter group W with Coxeter diagram

m

for m ∈ {2, 3, . . . ,∞}, which includes all Coxeter groups of type I, along with A1×A1, A2, B2, G2, and
the irreducible Euclidean Coxeter group Ã1 (when m = ∞), that is all finite dihedral groups together
with the infinite dihedral group. Label the two generators a and b, then every element of W has a
reduced word which is a finite alternating sequence αk = ab · · ·︸ ︷︷ ︸

length k

or βk = ba · · ·︸ ︷︷ ︸
length k

for k ≤ m.

Without loss of generality, let us consider w = αk. The Bruhat covering graph of w is shown in
Figure III.2a. It is clear that [e, w] is palindromic, and the Poincaré polynomial of w is

Pw(q) = 1 + 2q + 2q2 + · · ·+ 2qk−1 + qk = [2]q[k]q

so the exponents are 1 and k−1. The inversion arrangement is also easily worked out (see Figure III.2b),
and one can see that Rw(q) agrees with Pw(q). Hence every element is smooth, and the conjecture holds
for W . Note that Figure III.2 shows that the regions in the inversion arrangement do not correspond to
the chambers labelled by the elements of the Bruhat ideal.

Question 2. Does the conjecture hold in type H?
2The idea of this proof is due to L. La Porta.
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(a) The Bruhat covering graph of w.
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(b) The inversion arrangement of w for m finite,
as a sub-arrangement of the arrangement H for W .
For m =∞ the picture is analogous.

Figure III.2

III.2 Infinite Coxeter Groups

We have seen that the conjecture does not hold when we move to infinite groups. For finite groups
Rw(q) is always palindromic because the inversion arrangement is invariant under the antipodal map
which behaved well with respect to the length function. For infinite Coxeter groups, there will necessarily
be hyperplanes in H which do not intersect, and so no such antipodal map exists. In this section we
shall be looking at the Bruhat ideal [e, w], and the Poincaré polynomial from the point of view of the
geometry of H in order to try to understand when they are palindromic.

2A Automorphisms, Anti-automorphisms, and Isometries of [e, w]

As was remarked above, for a finite Coxeter system the map w 7→ w0w is an anti-automorphism of
[e, w0] (i.e. a bijection onto itself which reverses Bruhat order). In general if [e, w] possesses an anti-
automorphism then Pw(q) is palindromic, however a priori this is not necessary.

Question 3. Is it the case that [e, w] is palindromic if and only if it possesses an anti-automorphism?
Can the existence of an anti-automorphism be characterised, and the anti-automorphism given explicitly?

On the other hand we might consider the automorphisms of [e, w]. The automorphisms of the whole
group have been studied and we have the following result.

Theorem III.2. [12, 23] Let (W,S) be an irreducible Coxeter system of rank at least 3, then the
automorphism group of Bruhat order is generated by Coxeter diagram automorphisms and the mapping
w 7→ w−1.

The case of rank 1 is trivial, and rank 2 is exceptional (see [5, Exercise 2.2]), but by Example
III.2 we have already solved the conjecture in this case. Algebraically an automorphism of the Coxeter
diagram corresponds to a permutation of S which preserves the group relations, hence it extends to an
automorphism of the whole group in the obvious way. Geometrically, S corresponds to the faces of the
fundamental chamber C (recall from Section I.1C), and the relations correspond to the dihedral angles
between these faces. Hence the diagram automorphisms are precisely the symmetries of C, which clearly
extend to symmetries of H.

The element w is the unique element of maximal length in [e, w], and since automorphisms of Bruhat
order are length preserving, an automorphism α restricts to an automorphism of [e, w] if and only if
α(w) = w. Geometrically this means a symmetry of C which also stabilises wC if α is a diagram
automorphism. Conversely, any automorphism of [e, w] must stabilise C, and hence is an automorphism
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of Bruhat order arising as in Theorem III.2. Diagram automorphisms fall into a larger class of symmetries
of [e, w].

Definition III.1. Let (W,S) be a Coxeter system and w ∈W . An isometry of [e, w] is an isometry of
V ⊃ H which stabilises [e, w]C =

⋃
u∈[e,w] uC. We write Isom([e, w]) for the group of isometries of [e, w].

It is clear that an isometry of [e, w] must stabilise H and so is in the group generated by W itself to-
gether with the symmetries of C. The following result concerns those elements of W which are isometries
of [e, w].

Lemma III.3. Let (W,S) be a Coxeter system and w ∈W . Recall the notation D(w) := S ∩ inv(w). If
w′ ∈WD(w) then w′ stabilises [e, w].

Proof. Let u ∈ [e, w]. It is sufficient to show the claim for s ∈ D(w). If s ∈ inv(u), l(su) < l(u) by

Proposition I.1 and so su
s→ u, in particular su ≤ u ≤ w, so su ∈ [e, w]. Otherwise s 6∈ inv(u), so

there is no reduced word representing u which starts with s (see Remark I.2). On the other hand there
is a reduced word for w starting with s, and so by the subword property, su is a subword of w, hence
su ≤ w. �

Conjecture 1. Let (W,S) be a Coxeter system and w ∈ W , then Isom([e, w]) is generated by D(w)
together with diagram automorphisms which fix w.

Remark III.1. Evidence to support this conjecture can be seen in Figure III.5 and [20, Section 11.5.3].

Fix w ∈ W , we consider the subgroup WD(w) of Isom([e, w]). Since [e, w] is a finite set (see Remark
I.1), Isom([e, w]), and hence WD(w) are finite groups. In fact this second group is a finite Coxeter
group, and so we can consider the sub-hyperplane arrangement associated to WD(w) of the hyperplane
arrangement H arising from W , which we shall denote Hw. If C is the fundamental chamber in H (i.e.
the chamber associated to eW ), let Cw be the chamber of Hw which contains C and thus is associated
to eWD(w)

. Define Fw := {u ∈W | uC ⊂ Cw} to be those elements of W whose corresponding chambers
lie in Cw. Then WD(w) acts simply transitively on the chambers of Hw with Cw as fundamental domain.
Thus

Lemma III.4 (Parabolic Decomposition II). Let (W,S) be a Coxeter system, and w ∈ W . Then
there exist unique u ∈ WD(w) and v ∈ Fw such that w = uv. Moreover l(w) = l(u) + l(v). Since
WD(w) ⊂ Isom([e, w]), WD(w) ⊂ [e, w], and for any u ∈ WD(w), and v ∈ Fw ∩ [e, w], uv ∈ [e, w]. It thus
follows from Lemma III.1 that

Pw(q) = Pw0(q)(Fw ∩ [e, w])(q)

where w0 is the longest element in WD(w), and (FT ∩ [e, w])(q) is the length generating polynomial of the
set of elements FT ∩ [e, w].

Theorem III.1 means that we know Pw0
(q), factors into q-numbers, and the exponents have been

tabulated. Hence we are reduced to considering just the set FT ∩ [e, w]. Whether or not w is smooth, as
well as the full factorisation of Pw(q) is determined by this set.

Remark III.2. Diagram automorphisms are length preserving so they do not contribute to the factori-
sation pf Pw(q) which is why we do not include these. Algebraically the set Fw is the same as WD(w),
so the content of this lemma is the second bullet point. In fact the set Fw also admits the description
as the set of minimal length coset representatives for WD(w)\W . In [12], A. Hombergh showed that for
any w ∈W and any subset T ⊂ S, WT contains a unique element of maximal length in [e, w], which we
denote m(w, T ). S. Billey and A. Postnikov proved the following using this.

Lemma III.5 (Parabolic Decomposition III). [3, Theorem 6.4] Let (W,S) be a Coxeter system, and
w ∈ W . Let T ⊂ S and suppose we have a parabolic decomposition w = uv with u ∈ WT and v ∈ WT ,
and furthermore, that u = m(w, T ). Then

Pw(q) = Pu(q)(WT ∩ [e, v])(q)

Remark III.3. If we take T = D(w) in the previous lemma we recover the Lemma III.4, and T ⊂ D(w)
we get a coarser factorisation. If we assume Conjecture 1 and we take T ⊂ S\D(w) then the factorisation
we get is trivial, and taking any other T , the condition u = m(w, T ) is not satisfied. Hence the two
previous lemmas have the same content, although the geometric approach is, as far as we know, novel.
This result was further studied by W. Slofstra [21].
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Example III.3. Consider again the symmetry group of the tiling of the plane by squares, B̃2, and
let w = 121231 which has Poincaré polynomial Pw(q) = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6. We can
visualise the Bruhat ideal [e, w] as in Figure III.3. The fundamental chamber C is black and the chamber
corresponding to w is red. The sub-hyperplane arrangement Hw is shown in green. The set of elements
Fw ∩ [e, w] corresponds to the two brown chambers. It is clear that the brown chambers together with
C tile [e, w]. Since the length generating function of these elements is 1 + q + q2 which is palindromic,
w is smooth, and in fact

Pw(q) = Pw0(q)(1 + q + q2) = (1 + q)(1 + q + q3)(1 + q + q2) = [2]q[3]q[4]q

Figure III.3: Bruhat ideal of w with WD(w), Fw ∩ [e, w] and Hw indicated.

2B Calculations using Computers

A lot of the work on this project has been in building a Wolfram Mathematica notebook [20] which has
the ability to do many common computations in Coxeter groups and apply these to the specific questions
raised here concerning Bruhat ideals; it has has large classes group elements enumerated and stored in
memory to speed up the computation of examples; and it has many functions designed to compute, and
in low dimensional cases, visualise examples. We shall use this section to exhibit some of these examples
and suggest further questions which can be explored.

We shall focus on the three irreducible tilings of the plane because these are the easiest to visualise with
the aid of a computer. Their Coxeter diagrams are shown in Figure III.4. The diagram automorphism
groups are I2(3), A1, and {e} respectively.

(a) The tiling by equilateral trian-
gles Ã2.

44

(b) The tiling of the plane by
squares B̃2.

6

(c) The tiling of the plane by
hexagons G̃2.

Figure III.4

More examples of Bruhat ideals

We have computed large numbers of Bruhat ideals in [20, Section 11.5.3], a representative sample is shown
in Figure III.5. In each case the fundamental chamber is black and the chamber corresponding to w is red.
Those chambers in Fw are brown. The only non-smooth example we have included here is Figure III.5l.
In many of these examples the factorisation of the Poincaré can be seen by decomposing the diagram
geometrically. For example in Figure III.5g, the first factor [2]q comes from the the decomposition of
[e, w] into the brown and orange regions. The other two factors come from decomposing the brown region
as 4 copies (hence [4]q) of the 2-chain consisting of the fundamental chamber and the chamber directly
below it (hence [2]q).

There are some cases however where the geometric decomposition shown is incompatible with the
factorisation of Pw(q) into q-numbers. Consider Figure III.5b, the length generating function of the
chambers in the brown region is 1 + q + 2q2 + q3 + q4, which is palindromic, but does not factorise into
q-numbers. To interpret the factorisation given, think of the first factor [3]q as coming from acting on
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[e, w] by the cyclic group of order three with fundamental domain the union of the brown region and its
reflection in its short side. This larger region now decomposes into four copies of three chambers which
gives the factors [3]q[4]q.

(a) Ã2, w = 13123,
Pw(q) = [2]q[3]q[3]q

(b) Ã2, w = 1312312,
Pw(q) = [3]q[3]q[4]q

(c) Ã2, w = 131231231,
Pw(q) = [3]q[4]q[5]q

(d) Ã2, w = 13123123123,
Pw(q) = [3]q[5]q[6]q

(e) Ã2, w = 2131,
Pw(q) = [2]q[2]q[3]q

(f) G̃2, w = 212312121,
Pw(q) = [2]q[4]q[6]q

(g) G̃2, w = 21213,
Pw(q) = [2]q[2]q[4]q (h) G̃2, w = 131213,

Pw(q) = [2]q[3]q[4]q

(i) B̃2, w = 121313,
Pw(q) = [2]q[3]q[4]q

(j) B̃2, w = 1212312,
Pw(q) = [2]q[4]q[4]q

(k) B̃2, w = 2123121,
Pw(q) = [2]q[4]q[4]q

(l) B̃2, w = 121231231,
Pw(q) = [2]q[2]q[4]q ×
(1 + q2 + q3 + q4)

Figure III.5: Some Bruhat ideals. In each case, the group, element, and Poincaré polynomial are given.
For simplicity we replace the generator si with i when giving the group elements.

The set of smooth elements

We have computed all smooth elements in Ã2, B̃2, and G̃2 which have length at most 20 [20, Section
11.5.2], these elements are shown in Figure III.6. Note first that as we expect from Theorem III.2 the
diagram automorphisms for each group correspond to symmetries in these pictures. These pictures are
also invariant under the map w 7→ w−1, but this does not have a simple geometric interpretation (i.e.
not as an isometry of the underlying space), so it cannot be seen. We also note that in each case, the
elements which have small length are all smooth. We can make this precise.

Proposition III.3. [5, Lemma 2.7.3 and Corollary 2.7.8] Let (W,S) be a Coxeter system, and w ∈W
with l(w) ≤ 3, then w is smooth.

This is because there are only very few possibilities for what the Bruhat graph can look like if [e, w]
is small. It is also clear from our examples that this cannot be improved upon in general. The final
observation is that with the exception of Ã2 there appear to be only finitely many smooth elements, and
even in the case of Ã2 there is just one easily characterisable infinite family of smooth elements up to
diagram automorphisms. A few of the Bruhat ideals for these are shown in Figures III.5a–III.5d.

One heuristic way to understand why this may be the case (which necessarily fails in the case of Ã2)
is as follows: we can imagine [e, w] as approximating a ball of radius l(w) centred on the fundamental
chamber. Intersect this with the region denoted Fw, the fundamental chamber of the finite automorphism
group of [e, w] generated by D(w). It is well known that the fundamental chamber of a finite Coxeter
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group is a simplicial half-cone (possibly crossed with Rk for some k), see for example [8, Theorem I.5C].
In particular we would expect Fw ∩ [e, w] to contain more longer elements than shorter ones, so would
not be palindromic. This picture appears to become more accurate as l(w) increases, see [20, Section
11.5.3]. Some more precise study of these ideas can be found in [7].

Question 4. With the exception of cases like Ã2, is it true that (W,S) only has finitely many smooth
elements for any Coxeter system? Can the existence of these simple infinite families of elements be
characterised?

(a) Ã2

(b) B̃2
(c) G̃2

Figure III.6: The chambers corresponding to smooth elements are coloured green, and non-smooth
elements blue. The fundamental chamber is black.

The sets of exponents

The final thing we shall discuss is the set of exponents associated to a smooth element (which we know
is unique by Lemma III.2). What is noticeable in Figure III.5, but even more striking when a large
number of examples is computed (see [20, Section 12.2.1]), is that the number of exponents appears to
be bounded by the rank of the group. This is not wholly surprising given the partial factorisation of the
Poincaré polynomial given by Lemma III.4. Indeed we know that this is the case in finite types discussed
in Chapter II because of the way the exponents were defined in terms of the inversion graph.

Conjecture 2. Let (W,S) be a Coxeter system which satisfies the q-factorisation property, and let w ∈W
be smooth. Fix a reduced word for w, and let S(w) be the set of generators in S which appear in this
reduced word (it is well known that this set does not depend on the choice of reduced word). Then w in fact
lives in the subgroup WS(w), and we conjecture the number of exponents of w is #S(w) = Rank(WS(w)).

III.3 Final Remarks

The work of V. Lakshmibai and B. Sandhya [15] later generalised by S. Billey et al. [1, 3, 4] shows that
the rational smoothness of Schubert varieties can be characterised by combinatorial properties of the
associated Weyl group elements. S. Oh et al. were able to reinterpret these results in the geometry of
hyperplane arrangements associated to the Weyl group [17, 18]. None of these results appear to use
the fact that the root system associated to the Weyl group is crystallographic in any essential way,
so it is natural to ask whether these results generalise to all Coxeter groups. While the question was
posed in [18], this appears to be the first attempt to study geometric criteria for the Bruhat ideal to
be palindromic in this general setting. The discussion here is very speculative, nevertheless there are
many interesting questions to be asked; moreover it is clear that there is a natural pairing between the
geometry of the Coxeter group and the Bruhat ideal, and in particular the factorisation of the Poincaré
polynomial. Although this final chapter contains little in the way of concrete proofs, we hope to have
laid out the first steps of a natural and fruitful path towards answering these questions. We also hope
that these ideas can be developed to produce a uniform proof of the known results, which so far have
only been proved on a case by case basis.
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