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Abstract

In this thesis we study two main threads. In Part I, we initiate the study of Nielsen

equivalence in Coxeter groups—the classification of finite generating sets up to a

natural action of the automorphism group of a free group. We explore differ-

ent Nielsen equivalence invariants and adapt the method of Lustig and Moriah

[79] to the Coxeter case. We also adapt the completion sequences of Dani and

Levcovitz [31] to give a method of testing when generating sets of right-angled

Coxeter groups are Nielsen equivalent.

Coxeter systems have a distinguished set of elements, called the reflections,

from which generating sets can be drawn. We study generating sets of reflec-

tions separately. In this case, the natural notion of equivalence is generated by

partial conjugations of one generator by another. This arises naturally for Weyl

groups in the context of cluster algebras via quiver mutations [6]. We study this

mutation equivalence for Weyl groups, and reflection equivalence for arbitrary Cox-

eter systems. In the latter case we leverage hyperplane arrangements in the Davis

complex associated to a Coxeter system to give geometric criteria from when a

set of reflections generates and a test for when generating sets of reflections are

reflection equivalent.

In Part II, we discuss the other main topic of the thesis is group equivariant

machine learning, based on joint work with Aslan and Platt [3]. We propose a

novel approach to defining machine learning algorithms for problems which are

equivariant with respect to some discrete group action. Our approach involves

pre-processing the input data from a learning algorithm by projecting it onto a

fundamental domain for the group action. We give explicit and efficient algo-

rithms for computing this projection. We test our approach on three example

learning problems, and demonstrate improvements in accuracy over other meth-

ods in the literature.
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Impact statement

The primary impacts of the work presented in Part I are to mathematics academia.

Coxeter groups are an well-studied class of groups which connections with many

areas of mathematics. Nielsen equivalence, meanwhile, has a long history of in-

terest, with applications to generating random group elements, for example. This

work contributes to, and connects, these two separate areas.

In Chapter 3 we build on the work of Michael Barot and Bethany Marsh [6],

trying to understand the connection between cluster algebras, quiver mutations,

and presentations of Weyl groups. There the authors related these presentations

to companion bases of the associated root system, while in [53], analogous presen-

tations of braid groups are given a categorical interpretation. We work towards a

new interpretation in terms of reflection equivalence of reflection generating sets

of Weyl groups which may help understanding the connection further. Another

impact of this work is cultural, as the proof of Proposition 3.18 was the inspiration

for a collaborative art project with Melissa Rodd [98].

One of the most natural applications of studying Nielsen equivalence in Cox-

eter groups is to studying Nielsen equivalence in Artin groups. These form an-

other very important class of closely related groups. This is because any Artin

group (with a given Artin presentation) surjects onto a Coxeter group with a corre-

sponding Coxeter presentation. Because of this, their theories parallel each other.

More specifically, understanding Nielsen equivalence in Coxeter groups gives a

method of finding Nielsen equivalence invariants for Artin groups via the surjec-

tion just mentioned, see Section 2.2.

A potential future application of the work in Chapter 4 is to the study of reflec-

tion quotients of Coxeter groups which have only received a little attention, see

for example [84].

These impacts will be brought about by the distribution of this work in future

publications.

The work in Part II is much more obviously applicable outside of its academic

field, as well as inside. Our theoretical contributions include a unified framework
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for intrinsic approaches to group equivariant machine learning based on lifting

maps between quotient spaces. Separately we contribute to the well-developed

field of algorithmic approaches to permutation groups. In particular we give the

first general algorithm to construct fundamental domains for arbitrary groups act-

ing on Rn by permuting coordinates, as well as for finding a projection map onto

that fundamental domain.

Finally, of course, the machine learning algorithms we propose can be applied

to a very wide range of real-world applications to improve efficiency and accu-

racy over existing algorithms. There are ethical questions, because our theoretical

method, applied to some image recognition task, could in principle be used to

improve detection of cancer just as well as it could be used by a nefarious organi-

sation or government to improve facial recognition. These impacts will be brought

about through publication of the work, which is already available as a preprint,

see [3].
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Chapter 0

Introduction

THE FIRST PART OF THIS thesis studies generators of Coxeter groups. We consider

Nielsen equivalence, which is the natural notion of equivalence on the set of finite or-

dered generating sets of a group which comes from the universality of free groups.

We discuss several special cases of the problem of classifying finite generating tu-

ples of Coxeter groups. These include classifying certain reflection generating

tuples of Weyl groups arising from the theory of cluster algebras (Chapter 3); reflec-

tion generating tuples in arbitrary Coxeter groups, with respect to some choice of

‘reflections’ in the group, (Chapter 4); and arbitrary generating tuples in the class

of right-angled Coxeter groups (Chapter 5).

In Part II we discuss a second topic: a novel application of well-studied ideas

from geometric group theory (namely fundamental domains and quotient spaces

of group actions) to the problem of equivariant machine learning: a highly active

area of research in computer science. We use the universal property of quotient

spaces to give a unified framework for so-called intrinsic approaches to equivari-

ant machine learning. In the case that the group is a subgroup G of the symmet-

ric group Sn which acts on Rn by permuting coordinates, we use the geometry

of Sn thought of as a Coxeter group of type A acting on its Coxeter complex (or

equivalently via the Tits representation, or on its Davis complex) to define an al-

gorithm which computes a fundamental domain for the action of G on Rn, and a

G-invariant projection map from Rn to this fundamental domain.

A feature which unifies the two parts of this thesis is a tendency towards al-

28
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gorithmic approaches to problems. In Part II this is clear as we are designing and

studying machine learning algorithms. In Part I we give algorithmic approaches

to studying three related and progressively weaker notions of equivalence of gen-

erating tuples of Coxeter groups. First we look at mutation equivalence of gen-

erating tuples of Weyl groups; then we give algorithms to test when a tuple of

reflections generates a given Coxeter group and when two such tuples are reflec-

tion equivalent; and finally we give algorithms to test when a tuple of elements

generates a given right-angled Coxeter group and when two tuples are Nielsen

equivalent. Although we do not discuss this in great detail, we have also written a

software package to aid in studying Coxeter groups, see [102], in which some of

these algorithmic approaches have been implemented.

0.1 Nielsen equivalence in Coxeter groups

Nielsen equivalence is a natural way to classify different generating tuples of a

group G. Consider two generating tuples of the same size S = (s1, . . . , sn) and

T = (t1, . . . , tn) for G, and let Fn = 〈x1, . . . , xn〉 be the free group of rank n. By the

universal property of free groups, the inclusion S ↪→ G induces a unique surjec-

tive homomorphism φS : Fn → G such that xi 7→ si for each 1 ⩽ i ⩽ n. Such a

map is called a marking of G. The tuples S and T are said to be Nielsen equivalent

if there is an automorphism α ∈ Aut(Fn) such that φT := φS ◦ α maps xi 7→ ti

for each 1 ⩽ i ⩽ n—in particular, φT is the marking of G associated to the inclu-

sion T ↪→ G (see Definition 1.15). Early work on Nielsen equivalence tended to

use combinatorial techniques [55, 117] or algebraic techniques [78], although geo-

metric techniques have also started to play a significant role [104, 76, 39]. Nielsen

equivalence also has connections with (simple-)homotopy type classification, see

for example [77].

The purpose of Part I of this thesis is to initiate the study of Nielsen equivalence

in the class of Coxeter groups. These groups are very important in the field of

geometric group theory, with very strong connections to areas like combinatorics;

Lie theory; classical geometry; and even algebraic geometry and representation
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theory. Geometrically, they can be defined as groups which act discretely on some

space so that they are generated by a finite tuple of reflections. This translates into

a more rigorous algebraic definition in terms of a presentation. A Coxeter group

is a group admitting a presentation of the form

W = 〈s1, . . . , sn | s2i , (sisj)mij〉, where mij = mji ∈ {2, 3, . . . ,∞}. (1)

Coxeter groups are closely related to some other classes of groups which have

already been well studied with respect to Nielsen equivalence, for example surface

groups [117, 76], and more generally Fuchsian groups [99, 79].

To distinguish Nielsen equivalence classes it is useful to have good invari-

ants. Several invariants for Nielsen equivalence have been studied over the years,

from the simple [90] to the complex [78], however there are well-known problems

which arise when trying to construct invariants in groups with 2-torsion. Since

Coxeter groups are generated by reflections (involutions), this presents difficul-

ties. In Chapter 2, we discuss several approaches to the problem in the case of

Coxeter groups. We discount the elementary approaches to Nielsen equivalence

invariants, since none of these are usefully applicable in general. Instead, we fol-

low the approach of Martin Lustig and Yoav Moriah in their study of Fuchsian

groups [79]. For a group G, they define an invariant χη : Gn → R associated to a

representation η : ZG → Mm(A) of the integral group ring of G to a matrix ring

over some abelian ring A. This invariant is valued in some quotient ring R = A/I

of A. We are able to characterise all such 1-dimensional invariants for Coxeter

groups.

THEOREM A (Theorem 2.24): Let W be a Coxeter group with integral group ring ZW

and let η : ZW → A be a 1-dimensional representation of ZW to an abelian ring A.

Then the Lustig-Moriah invariant χη factors through χηab where ηab : ZW → ZW ab. In

particular χη is valued in some quotient of Zm0 where m0 is the greatest common divisor

of {mij | i 6= j}.

In the case that n = 2, ie W is a dihedral group, this provides a complete

Nielsen equivalence invariant for generating pairs. In general, however, this seems
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to offer quite a coarse invariant and often m0 = 1, making this invariant useless.

We also consider higher dimensional invariants where η is a ‘mixed’ representa-

tion based on the Tits representation of W → GLn(R), but this invariably leads to

single-valued invariants.

Thereafter, our study focusses on constructing equivalences between generat-

ing tuples, rather than finding invariants to show inequivalence. This falls into

two main strands: classifying reflection generating tuples of arbitrary Coxeter

groups up to a stronger notion of equivalence which we call reflection equivalence;

and studying Nielsen equivalence in the restricted class of right-angled Coxeter

groups (and their quasiconvex subgroups).

0.1.1 Reflection equivalence in Coxeter groups

Typically Coxeter groups are not studied as isolated groups, but as Coxeter systems

(W,S) where S is a finite tuple of generators, with respect to which W admits a

presentation of the form given in (1). Then the elements of S are called the simple

reflections of the Coxeter system, and the set of their conjugates

R = {wsw−1 | s ∈ S and w ∈ W} (2)

is called the set of reflections of the Coxeter system.

In general, a Coxeter group may admit many different Coxeter systems which

are inequivalent up to automorphism, and may have different sets of reflections

and even have different ranks (ie sizes of the tuple S)—see the discussion of rigid-

ity in Section 2.1. Moreover the algebraic rank of a Coxeter group, ie the minimum

size of any generating tuple, may be very different from their Coxeter rank (the min-

imum size of any Coxeter generating tuple). As an example, all Coxeter groups

which admit finite irreducible Coxeter systems (see Definition 1.5) have algebraic

rank 2, but can have arbitrarily large Coxeter ranks.

This demonstrates that studying generating tuples of reflections is highly de-

pendent on the choice of Coxeter system for a Coxeter group, while Nielsen equiv-

alence is independent of the choice of Coxeter system. Nevertheless, the study of
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Coxeter systems rather than Coxeter groups is an extremely important and rich

field of research. This motivates us to separate out questions about classifying

generating tuples into two areas:

Question 0.1. When are two generating tuples of a Coxeter group Nielsen equiv-

alent?

Question 0.2. When are two generating tuples of reflections of a Coxeter group

with respect to a given Coxeter system equivalent up to a suitable notion of equiv-

alence?

This second question is the subject of Chapters 3 and 4. It does not make sense

to study reflection generating tuples up to Nielsen equivalence since any generat-

ing tuple of reflections is Nielsen equivalent to many generating tuples containing

non-reflections. As an example, if T = (t1, t2) is a generating tuple of reflection

for a Coxeter group with fixed choice of Coxeter system (W,S), then it is Nielsen

equivalent to T ′ = (t1t2, t1), but t1t2 is a rotation or a translation, geometrically

speaking, and is not conjugate to any element of S.

Instead we consider a different notion of equivalence which is a strengthening

of Nielsen equivalence and does preserve the set of reflections. For technical rea-

sons, we allow a reflection generating tuple to include the identity as a generator.

Then the equivalence relation generated by the transformations of the form

1. (t1, . . . , tn) 7→ (tσ(1), . . . , tσ(n)) for some σ ∈ Sn,

2. (t1, . . . , ti, . . . , tn)↔ (t1, . . . , 1, . . . , tn) if ti = tj for some j 6= i,

3. (t1, . . . , ti, . . . , tn) 7→ (t1, . . . , tjtit
−1
j , . . . , tn) for some j 6= i.

The third kind of transformation is called a partial conjugation. Since reflections are

involutions, we could replace t−1
j with tj , and it follows that this transformation is

a self-inverse. These transformations preserve the property of being a generating

tuple, and if ti is a conjugate of some s ∈ S, then so is tjtit−1
j . We call the notion

of equivalence this gives reflection equivalence, see Definition 2.6.
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Quiver mutations and Weyl groups

Another motivation for studying this notion of equivalence is that it arises natu-

rally, and quite unexpectedly, out of the theory of mutations of quivers—oriented

and edge-labelled graphs. This applies only to a special class of finite Coxeter

groups called Weyl groups, which are classified by their Coxeter-Dynkin diagrams

(see Definition 1.2)—an unoriented edge-labelled graph associated to the presen-

tation (1). A quiver is an oriented and edge-labelled graph, and there is a trans-

formation which can be applied to quivers which is called mutation, see Defini-

tion 3.2,. These transformations are particularly nicely behaved if the quiver is

obtained by orienting a Coxeter-Dynkin diagram associated to a Weyl group—

such quivers are called finite type.

Given a quiver which can be transformed into a(n oriented) Coxeter-Dynkin

diagram V by a sequence of mutations, it is possible to associate a tuple of reflec-

tion generators to the the Weyl group classified by V (in fact one can associate a

whole presentation to such a quiver which looks like (1) with finitely many ad-

ditional relations) [6]. When a mutation is performed, the effect is to change the

associated tuple of reflection generators by a finite sequence of partial conjuga-

tions. We call the equivalence relation which this induces mutation equivalence see

Definition 3.12.

A priori, mutation equivalence is a stronger equivalence relation than reflection

equivalence. It is almost a tautology to say that any reflection generating tuple

associated to a finite type quiver is reflection equivalent to the standard one, see

Proposition 3.16. In Chapter 3, we study to what extent mutation equivalence is

in fact stronger than reflection equivalence. In particular we prove the following.

THEOREM B (Theorem 3.36 and Corollary 3.37): Let W be a Weyl group (with its

standard Coxeter system), then any reflection generating tuple associated to a quiver is

mutation equivalent to a reflection generating coming from the Coxeter-Dynkin diagram

(up to diagram automorphism). In particular, for Coxeter-Dynkin diagrams of type An,

Bn, D2k+1, or En, all such reflection generating tuples are mutation equivalent.

The main part of the proof is in Proposition 3.18 which allows us to arbitrar-
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ily change the orientation on a quiver whose underlying graph is a tree without

affecting the presentation associated to the quiver. This proof admits a nice topo-

graphical interpretation in which we define a height function (see Definition 4.58)

on the quiver which encodes the orientations on the edges, and then we perform a

sequence of mutations at so-called prominent vertices, which are likened to erosion

and elevation.

Reflection equivalence in arbitrary Coxeter systems

The rather specialised case of generating tuples of Weyl groups coming from mu-

tations of Coxeter-Dynkin diagrams serves principally as a motivation for study-

ing reflection generating tuples in arbitrary Coxeter systems. In this level of gen-

erality, quiver mutation is not a priori a viable tool to study reflection equivalence.

The reason is that arbitrary quivers are not well-behaved under mutation in the

same way that finite type quivers are, meaning it not clear how to associate pre-

sentations of arbitrary Coxeter groups to quivers so that these presentations trans-

form nicely under mutations.

Instead we approach the problem from a geometric viewpoint. Given a Cox-

eter system (W,S), there is a CW-complex Σ on which it acts faithfully called the

Davis complex, see Section 4.1. This complex has the Cayley graph of (W,S) as its

1-skeleton, and can be given a CAT(0) metric such that the action is discrete and

by isometries. It also has a fixed choice of fundamental domain for the action of

W called the fundamental chamber and denoted K.

Any reflection t ∈ R (recall (2)) has fixed set Σt ⊂ Σ which has a collar neigh-

bourhood. Σ−Σt has two connected components and t swaps these components.

Thus t acts geometrically as a ‘reflection’ in Σ, and Σt behaves like a reflection

hyperplane.

We can represent a tuple of reflections in (W,S) by a hyperplane arrangement

T = (t1, . . . , tn) 7→ {Σti | 1 ⩽ i ⩽ n} = HT ,

and then the partial conjugation which transforms ti into tjtit−1
j can be interpreted

geometrically by replacing Σti with its reflection tjΣti in Σtj .



INTRODUCTION 35

Before using this geometric viewpoint to classify reflection generating tuples

up to reflection equivalence, we need to understand when a tuple of reflections

correspond to a Coxeter generating tuple. Let T be a finite tuple of reflections,

and write WT for the subgroup of W they generate. It is always true that WT is a

Coxeter group, but (WT , T ) may not be a Coxeter system in the sense that T does

not give rise to a presentation of the form (1). An alternative way to put this is to

consider the Coxeter group abstractly generated by T with presentation

W T := 〈T | t2, (tt′)mtt′ , for all t, t′ ∈ T 〉,

where mtt′ is the order of tt′ in W . (WT , T ) will fail to be a Coxeter system if the

map W T → WT : t 7→ t is not injective.

We first prove a criterion for when (WT , T ) is a Coxeter system, which is a

reinterpretation of a criterion due to Matthew Dyer [42]. Our proof is independent

of that original result. To state it we need to define what an outlier is.

Let T be a finite tuple of reflections, and WT the group it generates. The hy-

perplane arrangement associated to T divides Σ into components. Consider the

component KT of Σ−HT which contains the fundamental chamber K. We say T

contains no outliers if for every proper subset T ′ of T , Σ − HT ′ has a component

which strictly contains KT as a subset, see Definition 4.28 for an equivalent defi-

nition. If T has no outliers, then for any t, t′ ∈ T , if Σt and Σt′ meet in Σ, then they

do so in the boundary of KT .

THEOREM C (Equivalent to Theorem 4.34): The pair (WT , T ) is a Coxeter system if

and only if T has no outliers and for any distinct t, t′ ∈ T , either Σt and Σt′ do not meet;

or the dihedral angle between them, as measured in KT , is π/m for some integer m.

It is possible to use partial conjugations to turn any tuple of reflections into

one containing no outliers, but in general the resulting tuple does not satisfy the

conditions on the angles. We introduce a new transformation which takes two re-

flections t, t′ ∈ T such that Σt and Σt′ meet at an angle kπ/mwhere gcd(k,m) = 1,

and replaces t′ with another reflection t′′ inWT such that the angle betweenΣt and

Σt′′ is π/m. This is, in general, not a reflection equivalence, but when combined
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with the criterion above allows us to prove the following.

THEOREM D (Theorem 4.40 and Corollaries 4.41 and 4.42): Let T be a finite tuple of

reflections in (W,S), then there is an algorithm which produces a tuple of reflections T̃

that generates WT such that (WT , T̃ ) is a Coxeter system; computes the index [W : WT ];

and hence tests whether or not T generates W .

Restricting ourselves only to partial conjugations, this algorithm yields the fol-

lowing classification of reflection generating tuples of (W,S).

THEOREM E (Theorem 4.44): Let T be a finite tuple of reflections which generate (W,S),

then T is reflection equivalent to a generating tuple of reflections which contains no out-

liers, and such that the angles between any two Σt and Σt′ which meet are non-obtuse.

In particular, it follows that ifW is a Weyl group, then all reflection generating

tuples are reflection equivalent, see Corollary 4.45.

The Theorem leaves open the possibility that some generating tuples of reflec-

tions are inequivalent, and this is indeed the case. The simplest example is that

of the dihedral group of order 10, which admits a Coxeter system (Dih5, (s, s
′)).

Then (s, s′ss′) is a reflection generating tuple which is not reflection equivalent to

(s, s′). However, if we allow ourselves to use one extra generator, by replacing

T = (t1, . . . , tk) with (t1, . . . , tk, 1), then things become much simpler.

This process of increasing the size of a generating tuple is called performing a

stabilisation of T , see Definition 1.17. More generally we will say that a reflection

generating tuple T ′ = (t′1, . . . , t
′
k′) is a stabilisation of T if T ′ can be obtained from

T by performing (k′ − k) stabilisations. After performing #S = n stabilisations,

all reflection generating tuples become reflection equivalent to a stabilisation of S

for trivial reasons since we can find reflection equivalences as follows

T = (t1, . . . , tk)
stabilise7−→ (t1, . . . , tk,

n︷ ︸︸ ︷
1, . . . , 1)

reflection7−→
equivalence

(t1, . . . , tk, s1, . . . , sn)

reflection7−→
equivalence

(1, . . . , 1︸ ︷︷ ︸
k

, s1, . . . , sn).



INTRODUCTION 37

A rigorous justification of this is given in Lemma 2.8. We are able to show that in

fact performing a single stabilisation is sufficient.

THEOREM F (Theorem 4.47): Let T be a generating tuple of reflections for (W,S), then

after performing one stabilisation, T is reflection equivalent to some stabilisation of S

(note that the number of stabilisations is determined by #T and #S, in particular it will be

#T + 1− #S in this case).

Theorems E and F show that in general, reflection generating tuples of Coxeter

systems behave in the same way they do in the reasonably well-known case of

dihedral groups, compare with Theorem 2.1.

0.1.2 Nielsen equivalence in right-angled Coxeter groups

There is, of course, more to study about reflection equivalence, for example giving

an explicit description of the different equivalence classes of reflection generating

tuples for certain (sub-classes of) Coxeter systems, but Theorem E goes a long way

towards providing a comprehensive answer to Question 0.2. In Chapter 5 we turn

to the first question, regarding Nielsen equivalence in general.

As we observed at the start of Section 0.1.1, in general, Coxeter systems are

ill-suited to studying Nielsen equivalence in the associated Coxeter group since

Coxeter groups do not have a canonically defined Coxeter system (even up to au-

tomorphism), and the Coxeter rank of a Coxeter group can be significantly larger

than the algebraic rank. This poses a problem because almost all of the tools to

study Coxeter groups depend on, or at least are influenced by, a choice of Coxeter

system.

For this reason we focus on the case of right-angled Coxeter groups (RACGs).

These are the Coxeter groups which admit a presentation of the form given in (1)

in which all mij’s are either 2 or∞, see Definition 1.5. Geometrically this means

that all reflection hyperplanes are either parallel, or orthogonal. At first glance

this appears to be a restriction to an extremely simple class of groups, however the

class of these groups and their subgroups turns out to be a rich one with many

important applications in geometric group theory and beyond, see for example
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[57].

For our purposes, what makes RACGs nice to work with is that they are rigid,

meaning that they do have a canonical choice of Coxeter system up to automor-

phism (and sometimes even up to inner automorphism, see Theorem 2.10); and

also their Coxeter rank coincides with their algebraic rank, which can be seen eas-

ily by mapping to their abelianisation. Thus a Coxeter system (W,S) for a RACG

gives a somewhat canonical minimal generating tuple for W .

Returning briefly to reflection generating tuples with respect to a choice of

Coxeter system (W,S), as with Weyl groups it is possible to conclude from Theo-

rem E that every reflection generating tuple ofW is reflection (and hence Nielsen)

equivalent to some stabilisation of S.

In fact we expand our remit to include quasiconvex subgroups of RACGs, sub-

groups which sit inside their host group nicely with respect to the geometry of

the group (in particular, the geometry of the Davis complex of (W,S)), see Defi-

nition 5.11.

Again our approach is geometrical in flavour, but instead of working in the

Davis complex we manipulate certain cube complexes whose edges are labelled

by elements of S. Given a finite generating tupleX for a quasiconvex subgroupG

of W , we can build an S labelled rose graph ΩX (ie 1-dimensional cube complex)

by subdividing and labelling each petal according to the elements of S.

We make heavy use of the work of Pallavi Dani and Ivan Levcovitz [31], who

construct finite sequences of cube complexes to G starting with ΩX and ending

with a so-called completion of G, Ω̂X , see Definition 5.3. This completion, or at

least a certain core subgraph, is uniquely determined by G, independent of the

choice of X . This immediately gives an algorithm to check if a given tuple of

elements generates a certain quasiconvex subgroup in parallel with Theorem D,

see Theorem 5.14.

There are two natural ways to interpret the labelled cube complexes Ω used

to construct a completion, one geometric, and the other algebraic. Geometrically,

one can take their universal cover Ω̃ which maps G-equivariantly into the Davis

complex Σ of (W,S). The procedure building the completion applies operations
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which make the map Ω̃ → Σ closer to an injection whose image is convex. Alge-

braically, the labelling defines a map from the fundamental group of Ω toG ⩽ W ,

and the moves can be interpreted as performing sequences of Tits moves (algebraic

manipulations of words using the relations in (1), see Definition 1.10) on words

representing the elements of G.

Notice that in the case that Ω has free fundamental group, this second inter-

pretation gives a marking of G. Since ΩX is a graph, we start with a space with

free fundamental group. Constructing a completion sequence as before, but mak-

ing sure never to create a cube complex with non-free fundamental group, gives a

sequence of markings which differ by an automorphism (or possibly a surjection)

of free groups. This corresponds to a sequence of Nielsen equivalences (or possi-

bly reductions, which are the inverse operation of stabilisation, see Definition 1.17)

between generating tuples for G.

Even though the completion sequences defined in [31] are finite for quasicon-

vex subgroups, it is not at all clear that these free completion sequences are finite.

The way we gain control over free completion sequences is by carefully construct-

ing them in parallel with non-free completion sequences. In this way we can prove

the following.

THEOREM G (Theorem 5.23): LetX be a finite tuple of elements in a RACG (W,S) Then

the following are equivalent:

1. X produces a finite free completion sequence ΩX → · · ·

2. X produces a finite non-free completion sequence ΩX → · · ·

3. X generates a quasiconvex subgroup of W

This gives a practical and algorithmic method to simplify a given generating

tuple for G. It also gives a test for when a generating tuple of W is Nielsen equiv-

alent to a standard generating tuple.

THEOREM H (Theorem 5.30): Let Ω̂free
X be a standard free completion of the rose graph

ΩX associated to some finite generating tuple of W , X . If Ω̂free
X retracts onto a graph then

X is Nielsen equivalent to a stabilisation of S.
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This falls short of proving that all generating tuples of W are Nielsen equiv-

alent to stabilisations of each other. Nevertheless, we conjecture that this is the

case.

CONJECTURE I (Conjecture 5.33): Let (W,S) be a Coxeter system for a RACG, then every

generating tuple for W is Nielsen equivalent to a stabilisation of S.

The observation that all reflection generating tuples are Nielsen equivalent to

some stabilisation of S lends some credence to this claim. We have also imple-

mented free completion sequences in Mathematica [102] and verified the conjec-

ture on many randomly generated generating tuples of a few different RACGs.

Two possible approaches to proving this Conjecture follow from our work.

The first is to show that any generating tuple is Nielsen equivalent to some tuple

of reflections. The second is to prove that any free completion coming from a

generating tuple retracts onto a graph.

0.2 A geometric approach to group equivariant

machine learning

In Part II we discuss a novel approach to supervised group equivariant machine

learning using classical ideas from geometric topology. A very broad class of

machine learning problems can be phrased mathematically as follows. Given a

continuous function α : X → Y between connected manifolds X and Y , we want

to approximate α as well as possible (with respect to some suitable norm on the

space of continuous functions X → Y ) in a class of functions M which can be

easily handled by a computer. The choice of this class M is called the machine

learning model or architecture, and the method to find a function β ∈ M which

closely approximates α is called the machine learning algorithm. A machine learn-

ing algorithm is supervised if it involves taking some large (finite) sample X0 ⊂ X

on which the function α is known, and using the dataDtrain = {(x, α(x)) | x ∈ X0}

to train the machine learning model.

A classic example of a supervised machine learning model and algorithm is a
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neural network, which assumes thatX and Y are real vector spaces and takes M to

be (roughly speaking) the class of piece-wise linear mapsX → Y . Then given the

training data Dtrain it evaluates the difference between the current choice of β and

α on X0 and uses a version of the gradient descent algorithm with respect to this

cost function to modify the linear parts of β to decrease the cost.

We approach the problem of finding more accurate and efficient machine learn-

ing models and algorithms in the more general case thatX and Y are Riemannian

manifolds, and there is a groupGwhich acts onX and Y discretely by isometries

such that the map αwe want to approximate is equivariant with respect to theseG

actions. Our main approach involves a data pre-processing set where we define a

G-invariant map π : X → X . G-invariance implies that π(x) lies in the same orbit

as x, so there is a function φ : X → G such that π(x) = φ(x) ·x. We then replace the

training data by Dπ
train = {(π(x), φ(x) · α(x)) | x ∈ X0} (see Figure 7.1). Since this

only changes the input data, we can use this new training data as input for any

machine learning algorithm and model, giving our approach a lot more flexibility

than many of the current approaches which work only for neural networks, say,

see for example [116, 59, 81, 25, 27].

Suppose we have trained a model β : π(X)→ Y on the dataDπ
train, then we can

turn this into a G-equivariant map β : X → Y by defining

β(x) = φ(x)−1 · β(π(x)) = φ(x)−1 · β(φ(x) · x).

The problem now comes in choosing and computing the G-invariant map π.

In order that π should respect the geometry ofX and the action ofG by isometries,

we propose choosing π to be a projection onto (the closure of) a fundamental domain

F for G acting on X . We give two methods of finding such a projection. The first

is based on the idea of a Dirichlet fundamental domain: let x0 ∈ X be a point whose

stabiliser lies in the kernel of the action of G on X , and define

F = {x ∈ X | d(x0, x) ⩽ d(x0, g · x) ∀g ∈ G},

where d is the metric on X induced by the Riemannian metric; then the funda-

mental domain F is the interior of this set, see Definition 9.1. Since F is defined
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via a minimisation problem with respect to the metric d, a natural way to compute

(or in reality approximate) π : X → F is to perform discrete gradient descent in

the Cayley graph of G with respect to some choice of generating set S.

The second method is more specialised in its application. AssumeX = Rn, on

which the symmetric group Sn acts by permuting the coordinates, and thatG acts

on X via a map G→ Sn onto some subgroup of Sn. We give an explicit combina-

torial description in Section 8.1.1 of a projection π : X → X onto a fundamental

domain.

This is based on [36], in which an explicit description of right transversals for

subgroups of Sn is given, ie sets of unique right coset representatives, see Defini-

tion 8.21. Notice that the action of Sn on X is essentially the same as its action on

its Davis (or Coxeter) complex if we think of Sn as a Weyl group of type A. We

can use the theory of chambers and galleries, discussed in [16], to modify the de-

scription of transversals mention above to give a transversal which corresponds

to a fundamental domain. Using this, we can describe an explicit projection map.

To the best of our knowledge, this is the first explicit description of fundamen-

tal domains for arbitrary permutation groups acting onRn, and also of a projection

map onto the fundamental domain. In fact our procedure depends on a choice of

a base forG, an ordered subsetB of {1, 2, . . . , n}, such that the point-wise stabiliser

ofB inG is trivial, see Definition 8.2. A base always exists since for anyG one can

take B = (1, 2, . . . , n − 1). Different choices for B lead to different fundamental

domains, so our method can be quite flexible. We also give several variations of

the method which may be better suited for different machine learning applica-

tions. In Section 8.2 we use the representation of subgroups of Sn in [67] to give

an implementable algorithm for computing π and analyse the complexity of this

algorithm.

THEOREM J (Theorems 8.10, 8.13 and 8.15): Given a subgroup G of Sn and a choice

of base B of size k < n, there is an algorithm which can compute π(x) for x ∈ X in

two steps. The first one-off step computes initial data (which does not depend on x), and

takes O(k2n3) time and O(n2 logn) space. The second step is applied to each x, and takes

O(k2n2) time and O(n2 logn) space.
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If G is a so-called primitive subgroup of Sn then we can compute an efficient base

with a bound on the size k (depending only on n). Then the first step can be computed in

O(n4(log logn)2) time, and the second step can be computed in O(n3(log logn)2) time.

For some special subgroups, for exampleG = Sn,An, or Zn then this drops toO(n2) time.

We have implemented our approach for several example machine learning

problems, and compared the accuracy of the resulting machine learning archi-

tectures with benchmarks from the literature. Our main example is that of com-

puting the first Hodge number of complex complete intersection Calabi-Yau man-

ifolds (CICYs), which have been studied in [61, 18, 17, 43]. These are varieties

defined as follows. Consider the space U = CPn1 × · · · × CPnℓ , and a collection

of k polynomials pi defined on U , then the zero-set of each defines a hypersurface

Hi = {z ∈ Z | pi(z) = 0}. Write degi(pj) for the degree of pj in the coordinates on

CPni . If
k∑
j=1

degi(pj) = ni + 1 for all i,

and each hypersurface is non-degenerate, then the intersection V =
⋂k
j=1Hj ⊂

U is a CICY, and V is determined up to diffeomorphism by the matrix D(V ) =(
degi(pj)

)
ij

.

Using the dataset in [54] of CICYs whose matrix D(V ) is of size up to 12× 15,

we compared our methods to others in the literature for predicting the first Hodge

number h1,1(V ) from D(V ). In this case, permuting the columns of D(V ) corre-

sponds to permuting the polynomials pi, and permuting the rows corresponds to

reordering the factors in U . Neither of these changes the diffeomorphism type of

V , so the problem is invariant under an action of S12×S15 on R12⊗R15. We found

using a projection onto a Dirichlet fundamental domain yielded the highest ac-

curacy, see Table 7.2. Our methods also lead to improvements over the baseline

accuracies in the other applications we tried, see Tables 7.1 and 7.3.

In addition to these concrete experiments, we also present a unified frame-

work for so-called intrinsic approaches to G-equivariant machine learning based

on the universal property of quotient spaces. We discuss how other methods in

the literature fit into this framework, and also compare these methods to ours
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qualitatively. When the group G is very small, simpler methods such as augmen-

tation are just as good, if not better than our approach, but for larger groups (say

S12 × S15) several of these methods break down as they become computationally

intractable. Our method has the advantages that it is efficient, works even for very

large groups, and does not depend on a specific machine learning model, such as

neural networks.

One might be concerned that these pre-processing steps impact the expres-

siveness of the machine learning model, however, at least in the case of neural

networks and projections onto a fundamental domain we show that this is not the

case by proving two versions of the Universal Approximation Theorem.

THEOREM K (Theorem 7.6): Let π : Rn → Rn be a projection onto a fundamental domain

and µ a finite measure on Rn. Then any G-invariant function Rn → Rm which has finite

Lp norm with respect to µ can be approximated arbitrarily well (with respect to the Lp

norm) by β = β ◦ π where β : Rn → Rm is a neural network.

THEOREM L (Theorem 7.8): Let π : Rn → Rn be a projection onto a fundamental domain

F andX aG-invariant compact subset of Rn such that π(X) ⊂ F . Then anyG-invariant

continuous function X → Rm can be approximated arbitrarily well (with respect to the

supremum norm) by β = β ◦ π where β : Rn → Rm is a neural network.

0.3 Structure of the thesis

In Chapter 1 we introduce some of the background on Coxeter group and Nielsen

equivalence separately which is then used throughout the rest of Part I. In the

first Section of Chapter 2 we give a more specific overview of Nielsen equivalence

in the context of Coxeter groups and introduce the main questions we seek to

answer. In the second Section of that Chapter we discuss invariants for Nielsen

equivalence in Coxeter groups. This Section does not play a significant role in the

rest of the thesis.

The three main Chapters then go on to discuss Weyl groups and quiver mu-

tations (Chapter 3), reflection equivalence (Chapter 4), and Nielsen equivalence
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Figure 1: Structure and dependencies of the Chapters in this thesis.

in right-angled Coxeter groups (Chapter 5). Each of these Chapters can be read

more or less independently of one another.

In Part II we introduce the background on equivariant machine learning in

Chapter 6. Our work falls into two parts: first a general mathematical approach

to the problem discussed in Chapter 7 followed by specific approaches and al-

gorithms which realise this approach in certain settings. These are discussed in

Chapters 8 and 9 which can be read independently of each other.
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Chapter 1

Background

IN THIS CHAPTER WE PROVIDE an overview of some background on Nielsen equiva-

lence and Coxeter groups. In the first Section we discuss Coxeter groups, starting

with their definition and some of the basic terminology and theory. As part of

this we review two well-known solutions to the word problem and summarise

the key ideas in [31]. In this paper Pallavi Dani and Ivan Levcovitz introduce cer-

tain sequences of labelled cube complexes which can be associated to subgroups

of right-angled Coxeter groups. We modify these in Chapter 5 to study Nielsen

equivalence.

In Section 1.2, we introduce Nielsen equivalence itself in terms of both gener-

ating tuples of elements of a group and markings of that group. We outline the

history of the study of this topic, finishing with a heuristic overview of the topo-

logical approach to studying Nielsen equivalence inspired by John Stallings work

on graphs and free groups via folds.

In the final Section we summarise what may at first appear to be an unrelated

topic: quiver mutations. Arising out of the fields of combinatorics and represen-

tation theory in the context of cluster algebras, this has a somewhat mysterious

connection with certain finite Coxeter groups called Weyl groups. This forms the

motivation for our study of a variation of Nielsen equivalence, reflection equiva-

lence, as well as an application.

47
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1.1 Coxeter groups

Coxeter groups are a very important class of finitely generated groups possessing

both a rich combinatorial and geometric theory. Named after Harold SM Cox-

eter who classified the finite Coxeter groups [30], the credit for studying them in

general goes to Jacques Tits in the 1960s [106, 107]. Certain finite Coxeter groups

called Weyl groups play a central role in the theory and classification of Lie groups

and algebras, which is why Coxeter groups are pivotal in Bourbaki’s treatment of

this subject [12]. Tits was principally interested in Coxeter groups because of their

importance in the construction of Tits buildings—spaces constructed to study ex-

ceptional groups of Lie type [1]. A good introduction to the geometric theory of

Coxeter groups can be found in Chapters I–III of [16].

Coxeter groups generalise the idea of a reflection group. Spherical, affine, and

hyperbolic type Coxeter groups are a rich source of examples of discrete groups act-

ing on spaces of constant curvature. Since all isometries of spherical, Euclidean,

and hyperbolic spaces can be decomposed as a sequence of reflections, many dis-

crete groups of isometries acting on one of these spaces, especially in dimension

2, are isomorphic to a finite index subgroup of a suitable Coxeter group.

Coxeter groups are also very important from a combinatorial point of view.

They admit a simple solution to the word problem due to Tits (see Section 1.1.2),

which is the direct algebraic counterpart of the completion sequences we define in

Section 5.1.3. They also admit a partial ordering called the Bruhat order, which is

of interest in order theory [10] as well as in the study of Schubert varieties—certain

algebraic subsets of flag manifolds indexed by elements of an associated Coxeter

group, see for example [9, 20]. Closely related, Coxeter groups play an essential

role in the theory of Kazhdan-Lusztig polynomials which connect to representation

theory. A good reference for the combinatorial theory of Coxeter groups is [10].

There are also surprising connections [6] between Coxeter groups and the theory

of cluster algebras [47, 48] which we exploit in Chapter 3.

Coxeter groups are also important in the field of geometric group theory. All

Coxeter groups are automatic and it is believed they may all be biautomatic. Coxeter
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groups are examples of CAT(0) groups, as they act on the Davis complex which,

with its piece-wise Euclidean metric, is CAT(0) [32]. In the case of right-angled

Coxeter groups, the Davis complex is a cube complex, and cube complexes asso-

ciated with these groups are central to the work of Frédéric Haglund and Dani

Wise on special cube complexes [57]. Coxeter groups are also very closely connected

to Artin groups and work on Coxeter groups forms a foundation for much of the

work on Artin groups.

1.1.1 Definition and basic properties

Most of the following is very well-known, for details consult for example [12, 16,

66]. The groups, which we refer to throughout most of the thesis as Coxeter groups,

should more properly be called Coxeter-Tits groups. Harold SM Coxeter is rightly

credited for classifying the finite Coxeter groups in 1935 [30], however the credit

for initiating the systematic study of all Coxeter groups goes to Jacques Tits in the

1960s [106, 107].

Definition 1.1. Let W be a group, and suppose there is a finite subset of involu-

tions S = {s1, . . . , sn} of W which generates the group. Define mii = 1 and for

each 1 ⩽ i, j ⩽ n let mij be the order of sisj in W . Since each si is a different

involution, it follows that mij = mji ∈ {2, 3, . . . ,∞}. If W is equal to the group

with presentation

〈s1, . . . , sn | s2i , (sisj)mij for all 1 ⩽ i, j ⩽ n〉,

then W is called a Coxeter group. The presentation above is called a Coxeter

presentation forW and the pair (W,S) is called a Coxeter system. Given a Coxeter

group W , we call the minimum number of generators in a Coxeter system for W

the Coxeter rank of W .

Conversely, given such a presentation, each of the in S represents a distinct

element ofW and has order 2. Note that neither the Coxeter system (W,S), nor the

rank n, is an isomorphism invariant ofW . It is often useful to summarise the data

of a Coxeter system in the form of a graph. There are two standard conventions

for this graph, and we employ both.
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Definition 1.2. The presentation diagram of a Coxeter system (W,S) is the la-

belled graph Γ = Γ(W,S) with vertex set S in which distinct vertices si and sj are

joined by an edge labelled mij if mij < ∞. By convention we omit edge labels

equal to 2. The Coxeter group with presentation diagram Γ is written WΓ.

On the other hand, the Coxeter-Dynkin diagram of (W,S) is also a labelled

graph V = V(W,S) which again has vertex set S and in which two distinct vertices

si and sj are joined by an edge labelled mij if mij > 2. This time the convention is

that edges labelled 3 have their label omitted. The Coxeter group corresponding

to the Coxeter-Dynkin diagram V is denoted by W (V).

Note that either of these diagrams determine both the Coxeter group W , as

well as a choice of Coxeter system. By writing WΓ or W (V), we are implying the

systems (WΓ, V Γ) or (W (V), V V) respectively. In a presentation diagram for a

Coxeter group, generators which do not appear together in any relations are not

joined by an edge and so the connected components correspond to a maximal

free-product decomposition of the group. On the other hand, in a Coxeter-Dynkin

diagram, generators which commute are not connected by edges, so the connected

components correspond to a direct product decomposition.

Definition 1.3. Let (W,S) be a Coxeter system, and T ⊂ S, then the subgroup of

W generated by T is denoted WT and is called a special subgroup. A conjugate

of a special subgroup is called a parabolic subgroup.

It turns out that WT is a Coxeter group with Coxeter system (WT , T ). In Sec-

tion 1.1.2, we define a faithful representation of W through which the generators

act by affine reflections on a real vector space and the action is discrete on a certain

subset of that space.

Definition 1.4. Anticipating this geometric realisation of W , define the set

R = R(W,S) = {wsw−1 | s ∈ S, w ∈ W},

to be the set of reflections of the Coxeter system (W,S).

There are several special classes of Coxeter groups which we record here.
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Definition 1.5. Let (W,S) be a Coxeter system, with Coxeter-Dynkin diagram V ,

and numbers mij as defined previously. Then (W,S) is

1. irreducible if V is connected, ie (W,S) does not decompose as a direct prod-

uct of special subgroups.

2. spherical if it is finite. The finite irreducible Coxeter systems have been clas-

sified. Their Coxeter-Dynkin diagrams are given in Table 1.1, and all spher-

ical Coxeter systems are finite direct products to these groups.

3. a Weyl group if it is spherical and irreducible of type A, B, D, E, F , or G as

shown in Table 1.1.

4. affine if it is infinite and acts discretely by isometries on some Euclidean

space, and the generators S act by affine reflections.

5. hyperbolic if it is infinite and acts by isometries on some hyperbolic space,

generated by reflections.

6. even if all mij’s are even or∞ for i 6= j.

7. right-angled if mij ∈ {2,∞} for all i 6= j. We abbreviate right-angled Cox-

eter groups as RACGs from now on.

When trying to compute Nielsen equivalence invariants in Section 2.2, it is

helpful to project a Coxeter group to its abelianisation. Fortunately, understand-

ingW ab is straightforward. Let (W,S) be a Coxeter system. Define an equivalence

relation ∼ on S as the transitive closure of si ∼ sj if mij is odd (including if i = j

and mii = 1). The following is straightforward to deduce from the Coxeter pre-

sentation of (W,S); alternatively, a proof may be found in Lemma 3.6 of [13].

PROPOSITION 1.6: With notation as above, let k be the number of equivalence classes in

S. Then W ab ∼= Zk2 and for any pair of generators s, s′ ∈ S the following are equivalent.

1. They are in the same equivalence class

2. They have the same image in W ab

3. They are conjugate in W
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An · · · for n ⩾ 1

Bn
· · · 4

for n ⩾ 2

Dn
· · · for n ⩾ 4

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(m)
m for m = 5 or m ⩾ 7

Table 1.1: Coxeter-Dynkin diagrams corresponding to finite irreducible Coxeter systems.
The subscript number in the name of each indicates the rank.

It follows that W and W ab have the same rank if and only if W is even. When

we consider reflection equivalence in Chapter 4, understanding which generators

are conjugate is useful.

1.1.2 The word problem

The word problem is a decision problem first introduced by Max Dehn in [33]. It

asks whether, given a group G and a set of generators S for G, there is an algo-

rithm to decide whether or not two words over S∪S−1 represent the same element

inG. In general, the word problem is undecidable in groups, however, for Coxeter

groups there are many solutions. Here we mention two: the first comes from a

faithful linear representation ofW , which is perhaps the most efficient and which

we implement in [102]; the second is a combinatorial algorithm, which under-

pins the nice properties of the completion sequences which we use in Chapter 5, see
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Theorem 1.11.

Definition 1.7. Let (W,S) be a Coxeter system of rank n, and let {e1, . . . , en} be the

standard basis of Rn. Define a symmetric bilinear form B on Rn by

B(ei, ej) := − cos
(

π

mij

)
.

Define ρ : W → On(B) on the generators by ρ(si)ej = ej − 2B(ei, ej)ei.

THEOREM 1.8 (Tits representation, see Section V.4 in [12]): The map ρ defines a faith-

ful representation ofW on Rn. The action preserves the form B and each generator si acts

by an affine reflection in the hyperplane Hsi = {v ∈ Rn | B(ei, v) = 0}. Write H+
si

for

the half-space with respect to Hsi which contains ei. Then the set C0 =
⋂n
i=1H

+
si

(called

the fundamental chamber) is open, connected, and non-empty. The action of W on the

interior of the set
⋃
w∈W wC0 (called the Tits cone), is discrete.

Now two words t1 · · · tk and t′1 · · · t′k′ in the alphabet S represent the same ele-

ment of W if and only if

ρ(t1) · · · ρ(tk) = ρ(t′1) · · · ρ(t′k′). (1.1)

This can be implemented into a computable algorithm as follows. First, if we as-

sume that the representation is in fact over the ring of integers Z, then the two

sides of (1.1) can be computed exactly and compared. More generally, the repre-

sentation will be over some finite field extension Q(a1, . . . , am) of Q generated by

the entries of {ρ(s) | s ∈ S}. Moreover, there will be a bound on the size of the de-

nominator of any rational coefficients (given in simplest form)—this is achieved

by multiplying through by a suitable integer replaces these rational coefficients

with integral ones. Overall then, it is possible to rephrase the problem over the

polynomial ring Z[x1, . . . , xm]. This can be solved in a similar way to the case over

Z. For details, consult [75].

To talk about the combinatorial solution we need another definition.

Definition 1.9. Let (W,S) be a Coxeter system. Define the length function on W

with respect to S, `S = ` : W → N as the length of the shortest word over S which

represents a given element. Such a shortest word is called a reduced expression.
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Given a word t1 · · · tk over S, it is always possible to manipulate it by using the

relations in the Coxeter presentation of (W,S) to turn it into a reduced expression

representing the same element.

Definition 1.10. Given a word t1 · · · tk over S, a Tits move is one of the following

rewriting procedures:

M1) Replace a subword of the form
length mij︷ ︸︸ ︷
sisjsi · · · by

length mij︷ ︸︸ ︷
sjsisj · · ·.

M2) Delete a subword of the form sisi for some si ∈ S.

Notice that neither of these moves increases the length of the word.

THEOREM 1.11 (Theorem 3 in [107]): Given any word over S representing an element

w ∈ W , there is a finite sequence of Tits moves which turns the word into a reduced

expression forw. Moreover, all reduced expressions forw can be obtained from this reduced

expression by a sequence of M1 moves (which do not change the length of the word).

The combinatorial algorithm which solves the word problem involves per-

forming all possible (M1) moves on a given word. If at some point an (M2) move

can be performed, this is used to shorten the word. After finitely many steps, no

more (M2) moves will be possible, and one ends up with a finite list of all mini-

mal length words representing the same element as the starting word. Repeating

this process for a second word, one can compare reduced expressions—the words

represent the same element if and only if their lists of reduced expressions are the

same. There is a particularly strong version of this Theorem which holds for right-

angled Coxeter groups (RACGs).

COROLLARY 1.12 (Proposition 2.2 in [31]): Let (W,S) be a right-angled Coxeter system,

and t1 · · · tk a non-reduced expression overS. Then there are indices i 6= j such that ti = tj

and ti+1, . . . , tj−1 all commute with ti = tj . Hence t1 · · · ti−1ti+1 · · · tj−1tj+1 · · · tk is a

shorter word representing w.

Finally, we will record a special property of spherical Coxeter groups with re-

spect to the length function.
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PROPOSITION 1.13 (Exercise 22 on page 40 of [12]): Let (W,S) be a spherical Coxeter

system with length function `. Then W contains an element w0 such that `(w0) ⩾ `(w)

for all w ∈ W . This element is unique, an involution, and conjugation by w0 permutes

the elements of S.

1.2 Nielsen equivalence

The problem of Nielsen equivalence concerns classifying tuples of generators of

groups and has been studied in combinatorial group theory throughout the sec-

ond half of the last century. Henceforth, we work with generating tuples of groups

rather than generating sets. Nielsen equivalence is named after Jakob Nielsen who

in 1924 proved the following result about free groups [91].

THEOREM 1.14 (Nielsen’s Theorem): Let Fn be the free group of rank n generated by the

tuple (x1, . . . , xn). Then the group of automorphisms Aut(Fn) is finitely generate by the

following automorphisms:

T1) xi 7→ xσ(i), for some permutation σ ∈ Sn

T2) xi 7→ x−1
i , for some fixed i, and all other generators are unchanged

T3) xi 7→ xixj , for some fixed i 6= j, and all other generators are unchanged

Definition 1.15. Each of the automorphisms (T1)–(T3) is called an elementary

Nielsen transformation. Any finite sequence of elementary Nielsen transforma-

tions (ie an automorphism on Fn) is called a Nielsen transformation.

By the universal property of free groups, given a finitely generated group G

and a generating tuple S = (s1, . . . , sn), there is a unique surjective homomor-

phism φ : Fn → G such that φ(xi) = si.

Definition 1.16. A surjective homomorphism φ : Fn → G from a free group to a

group G is called a marking of G. The image of the standard generating tuple of

Fn is the generating tuple this marking represents.

Elementary Nielsen transformations of X = (x1, . . . , xn) descend in the obvi-

ous way to transformations of S = φ(X). These are also called elementary Nielsen
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transformations. We will talk about Nielsen equivalence of X and S interchange-

ably.

Definition 1.17. Two generating tuples S and S ′ for a groupG are Nielsen equiv-

alent if there is a Nielsen transformation (ie a sequence of elementary Nielsen

transformations) which turns S into S ′. It follows from Nielsen’s Theorem that

this defines an equivalence relation on the set of generating tuples of G of fixed

size n.

If we replace a generating tuple S = (s1, . . . , sn) ofG by replacing (s1, . . . , sn, 1)

we will say we have performed a stabilisation of S. More generally we will say

that a generating tuple S ′ = (s′1, . . . , s
′
n′) is a stabilisation of S if S ′ can be obtained

from S by performing (n′ − n) stabilisations, possibly followed by an elementary

Nielsen transformation of type (T1).

Conversely, a generating tuple ofG is called reducible if it is Nielsen equivalent

to one which contains the identity.

Remark 1.18 (Nielsen equivalence after stabilisations). SupposeG has algebraic rank

k (ie the minimum number of elements needed to generate the group is k), and

S = (s1, . . . , sn) and S ′ = (s′1, . . . , s
′
n′) are generating tuples with n′ ⩽ n. Then,

after performing k stabilisations, S becomes automatically Nielsen equivalent to

a stabilisation of S ′. This is because there is a generating tuple S ′′ = (s′′1, . . . , s
′′
k) of

size k and we can find Nielsen equivalences such that

S = (s1, . . . , sn)
stabilise7−→ (s1, . . . , sn,

k︷ ︸︸ ︷
1, . . . , 1)

Nielsen7−→
equivalence

(s1, . . . , sn, s
′′
1, . . . , s

′′
k)

Nielsen7−→
equivalence

(

n︷ ︸︸ ︷
1, . . . , 1, s′′1, . . . , s

′′
k)

Nielsen7−→
equivalence

(s′1, . . . , s
′
n′ ,

n−n′︷ ︸︸ ︷
1, . . . , 1, s′′1, . . . , s

′′
k)

Nielsen7−→
equivalence

(s′1, . . . , s
′
n′ ,

n−n′+k︷ ︸︸ ︷
1, . . . , 1)

stabilise←− [ (s′1, . . . , s
′
n′) = S ′.
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Where we first express the generators in each of S, S ′, and S ′′ as words over each

other, and then performing suitable (T2) and (T3) transformations to create or

delete these words in the appropriate entries.

Notice that by the Nielsen’s Theorem again, any Nielsen transformation of S

lifts to an automorphism of Fn, which gives an alternative definition of Nielsen

equivalence. Let S and S ′ be two generating tuples of G of equal size, and let

φ, φ′ : Fn → G be the two surjections coming from the universal property. Then

S and S ′ are Nielsen equivalent if and only if there is an automorphism α of Fn
such that φ = φ′ ◦ α.

More generally, suppose S ′ has size m < n and φ′ : Fm → G is the corre-

sponding surjection. If there is a surjective homomorphism α : Fn → Fm such

that φ = φ′ ◦ α, then S is Nielsen equivalent to S ′ after (n−m) stabilisations and,

in particular, is reducible.

The goal in general is to classify all generating tuples of a given finitely gener-

ated group up to Nielsen equivalence. For example, in the free abelian group Zk,

a generating tuple of size n can be represented as an (n × k) Z-matrix. Elemen-

tary Nielsen transformations correspond to row operations. Moreover, putting

this matrix in row echelon form shows that any generating tuple of Zk is either

reducible (if n > k) or Nielsen equivalent to that standard generating tuple. The

general case for finitely generated abelian groups can be treated in a similar way

using [35], yielding the following result.

THEOREM 1.19 (Theorem 1.1 in [94]): Let G be a finitely generated abelian group, so

that it can be decomposed as Zm1 × · · · × Zmn × Zr where 1 < mi+1|mi for 1 ⩽ i < n.

All generating tuples of fixed rank greater than (n+ r) are Nielsen equivalent, and every

generating tuple of rank (n + r) is Nielsen equivalent to exactly one generating tuple of

the form

(

n terms︷ ︸︸ ︷
1, . . . , 1, k,

r terms︷ ︸︸ ︷
1, . . . , 1),

where 1 ⩽ k ⩽ mn/2 and gcd(k,mn) = 1.
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1.2.1 Previous work on Nielsen equivalence

The most important early result on Nielsen equivalence is Grushko’s Theorem

[55] proved in 1940, which treats the case of free products of groups. The original

proof is very combinatorial, however John Stallings later gave a short geometric

proof of the same result [104].

THEOREM 1.20 (Grushko’s Theorem): Let G = A ∗B be a free product, then any gen-

erating tuple forG is Nielsen equivalent to one of the form (s1, . . . , sn, s
′
1, . . . , s

′
m), where

(s1, . . . , sn) generates A, and (s′1, . . . , s
′
m) generates B.

Nielsen equivalence has been studied in earnest since at least the 1960s. Until

the millennium methods tended to be combinatorial. For example, in [38], Martin

Dunwoody showed that any tuple of n+1 generators of a finite solvable group of

rank n is reducible. Certain examples of rank 2, one-relator groups were studied

in [28, 64].

One class of groups which have been very well-studied are Fuchsian groups, ie

groups which nicely onH2, see the Definition below. In Theorem 6 of [117], Heiner

Zieschang proved that all minimal generating tuples of closed surface groups of

genus greater than 3 are Nielsen equivalent. Starting with work of Gerhard Rosen-

berger in the 1970s (for example [100, 99]), the effort to classify all generating tu-

ples of arbitrary Fuchsian groups has been the subject of several papers of Martin

Lustig and Yoav Moriah beginning with [77, 80]. In this effort they developed

a heavy-duty Nielsen equivalence invariant which is K-theoretic and based on

Reidemister-Whitehead torsion [78]. The state of the art is presented in [79]. For the

purpose of comparing with the case of Coxeter groups later, we state their main

result—for simplicity we restrict to the genus 0 case.

Definition 1.21. A (genus 0) Fuchsian group is a groupGwhich admits a presen-

tation for the form

〈s1, . . . , sℓ | sγ11 , . . . , s
γℓ
ℓ , s1s2 · · · sℓ〉,

where γi ⩾ 2 are called the exponents of G. We can give an equivalent geometric

definition of (genus 0) Fuchsian groups as groups which act properly discontin-
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uously and co-compactly by orientation preserving isometries on the hyperbolic

plane H2 and are generated by a set of finite order elements.

To see the equivalence of these definitions, let P ⊂ H2 be a fundamental do-

main for G acting on H2. P is a convex finite sided polygon and we can label the

vertices cyclically by p1, . . . , pℓ. Proper discontinuity of the action implies that the

internal angle at each of the vertices pi are of the form 2π/γi for some γi ⩾ 2 an

integer. Then G is generated by the set of rotations {si | 1 ⩽ i ⩽ `}, where si fixes

pi and rotates H2 by 2π/γi. This produces the presentation given above.

The exponents turn out to be isomorphism invariants for Fuchsian groups.

The relation s1s2 · · · sl allows us to write any one of the generators in terms of the

others, and so any tuple of the form

U = (su11 , . . . , s
uj−1

j−1 , s
uj+1

j+1 , . . . , s
uℓ
ℓ )

generates G, where gcd(ui, γi) = 1 for all i. Outside a small class of exceptional

cases, such a generating tuple is minimal; moreover, Rosenberger showed in [99]

that for non-exceptional Fuchsian groups, every generating tuple of G is Nielsen

equivalent to a tuple of this form. Then Lustig and Moriah proved the following.

THEOREM 1.22 (Theorem 1.2 in [79]): Let G be a Fuchsian group with presentation as

above. Assume that if G has an even number of exponents equal to 2, then at least 5

exponents are greater than 2; and that if G has an odd number of exponents equal to 2,

then at least 7 of the exponents are greater than 2. Given a second generating tuple

V = (sv11 , . . . , s
vk−1

k−1 , s
vk+1

k+1 , . . . , s
vℓ
ℓ )

with gcd(vi, γi) = 1 and j not necessarily equal to k, formerly define uj = vk = 1. Then

U and V are Nielsen equivalent if and only if ui = ±vi (mod γi) for each 1 ⩽ i ⩽ `.

In Section 2.2, we discuss the method they use to distinguish inequivalent gen-

erating tuples. In Chapter 4, we show that for minimal reflection generating tuples

of Coxeter systems, an analogous result holds.
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It is reasonable to ask how many Nielsen equivalence classes of generating tu-

ples groups can have in general, given the well-known fact that up to Tietze trans-

formations, all presentations of a finitely generated group are the same. Based on

[93, 45], Martin Evans showed that, for any n ⩾ 3, there is a group G of rank n

which has non-reducible generating tuples of size m, for any m > n [44]. Con-

sidering just minimal rank generating tuples, the cyclic group Zk has ϕ(k)/2 in-

equivalent generation tuples of size 1 for k ⩾ 3. Here ϕ is Euler’s totient function,

which is unbounded as k increases. The same thing happens for minimal gener-

ating tuples of Fuchsian groups [79]. There are even groups with infinitely many

Nielsen equivalence classes of generating pairs, for example [89].

More recent approaches to Nielsen equivalence tend to use to more geometric

methods, often inspired by Stallings’ proof of Grushko’s Theorem [104] and his

seminal paper [105]. For example, in [76], Larsen Louder generalised Zieschang’s

work to show that any generating tuple of a closed surface group of genus greater

than or equal to 2 is either reducible or Nielsen equivalent to the standard gen-

erating tuple. In a similar vein, Ederson Dutra has studied the case of Fuchsian

groups by working with the orbifold H2/G [39, 40].

Similar methods were employed by Ilya Kapovich and Richard Weidmann to

show that in a generic small cancellation group, there are generating tuples which

are not Nielsen equivalent after one stabilisation [69]. Moreover, in the special case

of one-ended torsion-free δ-hyperbolic groups, there are generating tuples which

are not Nielsen equivalent after (n − 1) stabilisations, where n is the rank of the

group [68] (compare with Remark 1.18).

They also considered groupsGwhich act by isometries on a δ-hyperbolic met-

ric space X . They proved that, except when G is both free and the orbit maps

G→ X : g 7→ gx are quasi-isometric embeddings for all x ∈ X , the generating tu-

ples of fixed rank are ‘uniformly short’ up to Nielsen equivalence [70]. This result

was proved independently by Goulnara Arzhantseva [2]. Staying in the world

of δ-hyperbolic groups, Spencer Dowdall and Samuel Taylor recently proved a

Grushko-like result for hyperbolic extensions of hyperbolic groups [37]. Their

work generalised a result of Juan Souto [103] studying Nielsen equivalence in the
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fundamental groups of mapping tori of pseudo-Anosov maps of hyperbolic sur-

faces.

Nielsen equivalence has some perhaps surprising applications. Lustig and

Moriah have applied their study of Fuchsian groups and Nielsen equivalence in-

variants to produce infinitely many examples of complexes which are homotopy,

but not simply-homotopy, equivalent [77]; and to classify Heegaard splittings of

Seifert fibred spaces up to isotopy and homeomorphisms [80]. In [24], William

Chen used the cardinalities of Nielsen equivalence classes of generating pairs of

finite groups to study solutions to the Markov equation, x2 + y2 + z2 − 3xyz = 0

over the finite field Zp. As another application, Darryl McCullough characterises

which groups have so-called large actions on orientable surfaces with a single orbit

of points with non-trivial stabilisers. They are non-abelian two-generator groups,

and the equivalence classes of these actions correspond to the Nielsen equivalence

classes of generating pairs for the group which is acting, see [85].

Perhaps the most well-known application is to give practical algorithms for

randomly sampling elements uniformly from a finite group. In principle, the po-

sition of a random walk on the Cayley graph of a finite group (with respect to

some generating set) ends up being uniformly distributed after sufficiently many

steps, but, in practice, this number of steps is too large to use. Instead, a more prac-

tical method involves starting with a generating tuple and performing a random

sequence of (T3) Nielsen transformations, see [35] and references therein.

1.2.2 Stallings folds

In this Section, we translate the algebraic description of Nielsen transformation

and reductions in terms of markings into a topological one. Let G be a finitely

generated group, and declare a generating tuple for G, S, to be the standard gener-

ating tuple. Suppose we wanted to prove that all finite generating tuples for G are

either reducible or Nielsen equivalent to the standard generating tuple S. Then

given an arbitrary finite generating tuple X for G and corresponding marking

φ0 : F(X) := Fn0 → G, we need to construct a finite sequence of surjective homo-

morphisms {αi : Fni
→ Fni+1

}Ni=0 between free groups which realise a sequence
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of Nielsen transformations (if αi is an isomorphism) and reductions (if Fni+1
has

strictly lower rank than Fni
), which transform X into S.

More precisely, each initial subsequence of the maps αi ◦ · · · ◦ α0 induces a

marking φi : Fni+1
→ G of G, by mapping (αi ◦ · · · ◦α0)(x) to φ0(x) for each x ∈ X .

Then we need to construct the sequence so that φN is the marking representing S.

Fn0 Fn1 · · · Fni
· · · FnN

G G · · · G · · · G= = = ==

α0 α1 αi−1 αi αN−1

ϕ0 ϕ1 ϕi ϕN

To translate this into topology, we can replace each of the groups with cell com-

plexes whose fundamental groups are the corresponding groups, and the homo-

morphisms by cellular maps which induce the corresponding homomorphisms

on the level of fundamental groups.

Ω0 Ω1 · · · Ωi · · · ΩN

O O · · · O · · · O= = = ==

f0 f1 fi−1 fi fN−1

g0 g1 gi gN (1.2)

Typically we choose Ωi to be either a graph, or a space which retracts onto a

graph, so these is no homological obstruction to representing representing homo-

morphisms π1Ωi → π1O by cellular maps. Since φN is the marking representing

the generating tuple S, it makes sense to chooseO to be the presentation complex

associated to 〈S | R〉, and to aim to have gN be the inclusion of the 1-skeleton into

O, ie ΩN is the rose graph with edges corresponding to the elements of S.

By setting things up in this way, gN is in some sense the simplest map of topo-

logical spaces which induces the surjection F(S) → G on fundamental groups.

Starting then with the map g0 representing an arbitrary marking, the aim is to

simplify this map as much as possible. It is not always possible to simplify the

maps monotonically with respect to some measure of complexity, however (see

for example [76]).

The easiest way to simplify the map gi : Ωi → O is if it fails to be locally

injective. If it is not locally injective when restricted to the 1-skeleton at a vertex

v, then there are two edges e and e′ which meet at v and are mapped to the same
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edge in O. Letting fi be the quotient map which identifies these edges, we get a

new simpler map Ωi+1 = Ω/e ∼ e′. As long as the fundamental group of Ωi+1

is still free, fi represents a Nielsen transformation. Identifying edges in this way

was introduced in [105] and is called a Stallings fold.

There are essentially four different possibly types of Stallings fold, depending

on how the endpoints of e and e′ are identified prior to the fold. These four cases

are shown in Figure 5.3. Analysing precisely which of these types of fold occur in

a given setting can be an extremely useful tool, see for example its application in

studying the accessibility of finitely presented groups in [8].

(a) (b) (c) (d)

Figure 1.1: The four types of Stallings folds.

If gi is locally injective on the 1-skeleton, but not on the whole of Ωi, then it

must identify higher dimensional cells and the idea of folding generalises to cell

identification.

To keep track of the maps gi, it helps to label the edges of O by S and ori-

ent them. Pulling back the labelling and orientation to Ωi then records all of the

information of the map gi. Naturally, this general approach we have outlined is

adapted to the individual case one is interested in. For example, when studying

surfaces in [76], Louder lets O be a closed surface cellulated as a square complex

(ie a 2-dimensional cube complex) with a so-called VH-structure.



Chapter 2

Preliminaries

STUDYING NIELSEN EQUIVALENCE IN COXETER groups has the potential to open the

door to studying other classes of related groups. For example, the theory of Artin

groups (see [21] and references therein) often parallels that of Coxeter groups be-

cause any Coxeter group WΓ with presentation diagram Γ can be viewed as a

quotient of the corresponding Artin group AΓ with the same presentation dia-

gram. For this reason, classifying generating tuples in Coxeter groups provides

an invariant for generating tuples of Artin groups via the surjection AΓ → WΓ

(see Section 2.2). This correspondence is perhaps particularly true of RACGs and

right-angled Artin groups. By the work of Haglund and Wise [57] this could also

help in studying the fundamental groups of special cube-complexes.

We discuss several aspects of the problem of Nielsen equivalence in Coxeter

groups including finding suitable invariants; the special case of generating tuples

consisting purely of reflections; and how the completion sequences of Dani and

Levcovitz can be applied to study Nielsen equivalence in RACGs. Prior to that, we

begin our investigation by considering the case of rank 2 Coxeter groups, which

is already well-known (the rank 1 case Z2 being trivial).

THEOREM 2.1: Let Dihk for k ⩾ 2 be the dihedral group of order 2k which is isomorphic

to the Coxeter group W (I2(k)) = 〈s1, s2 | s21, s22, (s1s2)k〉. For concreteness, view Dihk
as the group of symmetries of a regular k-gon with s1 and s2 reflections in lines which

meet at an angle π/k. Then any generating pair is Nielsen equivalent to (s1, t) where t is

a reflection such that s1t is a rotation by 2π`/k for some 1 ⩽ ` < k/2 with gcd(`, k) = 1

64
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(see Figure 2.1). Any two distinct such generating pairs are inequivalent. Any generating

tuple of rank at least 3 is Nielsen equivalent to (s1, s2, 1, . . . , 1).

s1 s2

t

Figure 2.1: A generating pair for a dihedral group.

The first part of this follows from Proposition 4.5 in [78], but the whole state-

ment is provable by elementary methods.

In Chapter 4, we prove that up to the natural notion of equivalence, all reflec-

tion generating tuples of arbitrary Coxeter systems satisfy the natural generalisa-

tion of this, see Theorems 4.44 and 4.47.

2.1 Ranks, rigidity, and reflection equivalence

The first problem which arises when studying generating tuples of Coxeter groups

is that, in general, a Coxeter group W does not have a canonical choice of asso-

ciated Coxeter system (W,S). There are examples (the first non-trivial example

was given in [88], see Example 2.14) of Coxeter groups with two different Coxeter

systems which have non-isomorphic diagrams. It is also possible for a Coxeter

group to admit two Coxeter systems with different ranks. The most well known

examples are the dihedral groups Dih2k for k odd. In this case, two different pre-

sentation diagrams are given in Figure 2.2. A relatively straightforward way to de-

termine all possible ranks of Coxeter systems for a given Coxeter group is given in

[87]. This just requires looking at the presentation diagram for one of its Coxeter

systems.

Nevertheless, if we fix the set of reflections in a Coxeter group, we can still

maintain control on the size of Coxeter generating tuples of reflections, even if we
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cannot control the corresponding presentation diagram.

2k 22

k

Figure 2.2: Two presentation diagrams corresponding to distinct Coxeter systems for the
dihedral group Dih2k where k ⩾ 3 is odd.

THEOREM 2.2 (Lemma 3.7 and Theorem 3.8 in [13]): Let (W,S) be a Coxeter system,

and S ′ ⊂ R(W,S) a set of reflections such that (W,S ′) is another Coxeter system for W .

Then R(W,S ′) = R(W,S) and #S ′ = #S.

For many Coxeter groups, the algebraic rank can be significantly less than the

minimum rank of one of their Coxeter systems, their Coxeter rank. For example,

Table 1.1 shows there are irreducible finite Coxeter systems with arbitrarily large

ranks, but it has been shown that all of these groups have algebraic rank 2 [29]. It

can be shown that this does not happen in certain classes of Coxeter groups. For

example, rank n Coxeter groups with even Coxeter systems have abelianisation

Zn2 (see Proposition 1.6), therefore we can conclude that they also have algebraic

rank n. More generally, in [19], the authors survey some classes of Coxeter groups

where the algebraic rank is known, and prove that if a Coxeter system (W,S) has

rank n and for all i 6= j, mij ⩾ 6× 2n, then the algebraic rank of W is also n.

2.1.1 Nielsen and reflection equivalence

There can be significant a disparity between the rank of a Coxeter system and the

algebraic rank of the corresponding Coxeter group, so it makes sense to separate

the problem of Nielsen equivalence into two parts.

Question 2.3. For a Coxeter groupW , when are two generating tuples of the same

size Nielsen equivalent, and when is a non-minimal generating tuple reducible?

Question 2.4. For a Coxeter system (W,S) with set of reflections R (recall Defi-

nition 1.4), when are two generating tuples with elements in R the same up to a

suitable notion of equivalence? If (W,S ′) is another Coxeter system for W such
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that R(W,S) = R(W,S ′), are S and S ′ equivalent to one another (by Theorem 2.2

S and S ′ must have the same cardinality)?

The reason why we do not use Nielsen equivalence in the second question is

that it is the inappropriate notion of equivalence for reflection generating tuples.

Nielsen transformations do not, in general, preserve the property of a generator

being a reflection (applying a transformation of type (T3), for example, always

yields a non-reflection). Instead we define a weaker notion of equivalence which

preserves the set of reflections.

Definition 2.5. Let (x1, . . . , xn) be a generating tuple for the free group Fn, then

an elementary partial conjugation is a transformation of the form

T4) xi 7→ xjxix
−1
j for some fixed i 6= j, and all other generators unchanged.

A transformation of type (T4) can be expressed as a sequence of elementary

Nielsen transformations of types (T2) and (T3), see Theorem 1.14. Therefore, it

is an example of a Nielsen transformation which can be reinterpreted in terms of

markings φ : Fn → W . The induced transformation on the generators of W , in the

case that φ(xi) = si and φ(xj) = sj are reflections, can be rewritten as si 7→ sjsisj

since sj is an involution. By definition, this preserves the conjugacy class of si,

and so transforms a generating tuple of reflections into another generating tuple

of reflections.

In order to be able to deal with stabilisations and reductions of generating tu-

ples of reflections we need to allow the identity 1 to appear as a generator and in-

troduce one more transformation to communicate between reflections and 1 (since

1 is in a conjugacy class on its own).

Definition 2.6. Let (W,S) be a Coxeter system with set of reflections R. Consider

the set of reflection markings φ : F(x1, . . . , xn)→ W such that φ(xi) ∈ R ∪ {1} for

all 1 ⩽ i ⩽ n. We call the tuple (φ(xi))i a reflection generating tuple. Consider

the following very special case of a (T3) elementary Nielsen transformation.

T3*) xi 7→ xixj for some fixed i 6= j such that either φ(xi) = 1 or φ(xi) = φ(xj),

and all other generators unchanged.
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Two reflection markings are called reflection equivalent if one can be transformed

into the other by a sequence of (T1), (T3*), and (T4) transformations.

Performing stabilisations on, and stabilisations of, reflection generating tu-

ples are defined in the same way as in Definition 1.17. When working exclusively

with reflection generating tuples, we call a reflection generating tuple reducible if

it is reflection equivalent a stabilisation of some other reflection generating tuple.

We are interested in answering Question 2.4 with respect to reflection equiv-

alence. We have already motivated studying this question in light of the impor-

tance of reflections in the study of Coxeter systems. To further motivate the defi-

nition of reflection equivalence: apart from being a straightforward weakening of

Nielsen equivalence which preserves reflections, we have seen that it arises natu-

rally in a completely independent context. Theorem 3.9 gives a way to transform

certain reflection generating tuples of Weyl groups associated to quivers by muta-

tions. These transformations are always compositions of partial conjugations and

we study them in Chapter 3.

In Chapter 4 we discuss an algorithm to determine whether a given tuple of

reflections from a Coxeter system (W,S) generatesW . Here, however, we can state

a necessary condition which also leads to a straightforward bound on the number

of stabilisations which need to be performed on a reflection generating tuple to

guarantee that it is reflection equivalent to a stabilisation of S.

LEMMA 2.7 (Follows from the proof of Lemma 6.4 in [111]): Let (W,S) be a Coxeter

system with #S = n. If T = (t1, . . . , tℓ) is a finite tuple of reflections which generates W ,

then there is some permutation σ ∈ Sℓ such that for 1 ⩽ i ⩽ n, tσ(i) is conjugate to si.

Now we can prove the following.

LEMMA 2.8: Let (W,S) be a Coxeter system with #S = n, and suppose T = (t1, . . . , tℓ)

and T ′ = (t′1, . . . , t
′
ℓ′) are generating tuples with `′ ⩽ `. Then, after performing n stabili-

sations, T becomes reflection equivalent to a stabilisation of T ′.

Proof. The proof follows the same pattern as Remark 1.18: starting with T we
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perform n stabilisations. We need to show that there is a reflection equivalence

(t1, . . . , tℓ,

n︷ ︸︸ ︷
1, . . . , 1) 7→ (t1, . . . , tℓ, s1, . . . , sn).

By Lemma 2.7, there is some σ ∈ Sℓ such that for 1 ⩽ i ⩽ n, tσ(i) is conjugate to si.

By writing tσ(i) = wisiw
−1
i for some wi ∈ W , we can perform n (T3*) transforma-

tions to obtain

(t1, . . . , tℓ,

n︷ ︸︸ ︷
1, . . . , 1) 7→ (t1, . . . , tℓ, w1s1w

−1
1 , . . . , wnsnw

−1
n ).

For 1 ⩽ i ⩽ n, we can write wi as a word over T . By performing a sequence of (T4)

transformations on wisiw−1
i according to the inverse of the word representing wi,

we are left with si. Repeating this for each i, this yields

(t1, . . . , tℓ, w1s1w
−1
1 , . . . , wnsnw

−1
n ) 7−→ (t1, . . . , tℓ, s1, . . . , sn).

A similar argument works for each of the other steps in Remark 1.18.

Theorem 2.2 guarantees thatn is the minimal number of stabilisations required

for this kind of argument to work. Comparing this with Remark 1.18, the alge-

braic rank of a Coxeter group may often be significantly lower than the size of S,

so, a priori, it seems much harder to make reflection generating tuples reflection

equivalent via stabilisations. In fact, we show in Theorem 4.47 that one can do

significantly better—in any Coxeter system a single stabilisation always suffices.

2.1.2 Rigidity of Coxeter groups

The most alluring situation in which to study the equivalence of generating tu-

ples of Coxeter groups is when Questions 2.3 and 2.4 overlap, ie when the alge-

braic rank of W is attained by one of its Coxeter systems. Especially if W admits

only one Coxeter system up to isomorphism. This brings in the notion of rigid-

ity of Coxeter groups. A good introduction to this topic is [13], or for a detailed

exploration consult [4].
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Definition 2.9. Let W be a Coxeter group, and (W,S) a Coxeter system for W .

The Coxeter system (W,S) is reflection rigid if every Coxeter generating tuple S ′ in

R(W,S) determines the same presentation diagram as S, and strongly reflection

rigid if additionally for any such S ′, there is an inner automorphism ofW sending

S to S ′.

On the other hand, the Coxeter groupW is rigid if any two Coxeter systems for

W , (W,S) and (W,S ′) determine the same presentation diagram (equivalently if S

and S ′ differ by an automorphism ofW ), and strongly rigid if this automorphism

can be chosen to be inner.

It follows immediately from the definition that if W is strongly rigid then all

Coxeter generating tuples are reflection equivalent, since they all differ by an inner

automorphism which lifts to an inner automorphism of the free group.

We have already remarked that Coxeter groups with even Coxeter systems

have algebraic rank equal to the rank of any (and hence every) even Coxeter sys-

tem. For the special case of RACGs, David Radcliffe proved that all RACGs are

rigid [95]. The following simple criterion for which RACGs are strongly (reflec-

tion) rigid based on their presentation diagram was given by Noel Brady et al.

THEOREM 2.10 (Theorem 4.10 in [13]): A RACG WΓ is strongly reflection rigid if and

only if for each vertex of Γ, the subgraph induced by all vertices not connected to that

vertex, is connected. Moreover WΓ is strongly rigid if and only if, in addition, each vertex

is the intersection of all maximal complete subgraphs of Γ containing that vertex.

We have already seen that, in general, finite Coxeter groups are not rigid (see

Figure 2.2) however for finite Coxeter groups we have the following.

THEOREM 2.11 (Theorem 3.10 in [13]): Let (W,S) be a Coxeter system for a finite Cox-

eter group W , then it is reflection rigid.

In general, a Coxeter system need not be even reflection rigid and one way to

see this is using so-called digram twists, first defined in [13] in Definition 4.4. Let

Γ be the presentation diagram for a Coxeter system (W,V Γ). Suppose S, T are

disjoint subsets of V Γ such that
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1. WS is spherical, and

2. Each vertex in V Γ− (S ∪ T ) which is connected to a vertex of T is also con-

nected to a vertex of S by an edge labelled 2.

Let w0 be the longest element in WS (see Proposition 1.13) and define a new gen-

erating tuple of reflections Ṽ = (ṽ)v∈V Γ where ṽ = v if v ∈ V Γ− T , and otherwise

ṽ = w0v.

THEOREM 2.12 (Theorem 4.5 in [13]): The pair (W, Ṽ ) is a Coxeter system. Its presen-

tation diagram Γ̃ can be obtained from Γ as follows:

1. For each edge in Γ joining a vertex s in S to a vertex t in T , add an edge with the same

label between w̃0s = w0s and t̃ = w0t (recall from Proposition 1.13 that conjugation

by w0 permutes the elements of S).

2. For any other edge in Γ, which joins vertices v1 and v2 say, add an edge with the

same label between ṽ1 and ṽ2.

Definition 2.13. The presentation diagram Γ̃ is said to be obtained fromΓ by twist-

ing T by w0 around S, and the overall effect is called a diagram twist.

Example 2.14 ([88]). The presentation diagram on the right in Figure 2.3 is ob-

tained by twisting T around S in the diagram on the left, and so represent the

same Coxeter group.

3

3

3

S

T

3

3

3

Figure 2.3: A diagram twist.

It follows immediately from the definition that, if Γ is a presentation diagram

for a Coxeter group and Γ̃ is obtained by a diagram twist, then Ṽ is reflection

equivalent to V Γ. Therefore, if a Coxeter group is strongly rigid up to diagram

twists (compare to Theorems 5.4 and 5.7 in [13]) then all its Coxeter generating

tuples are reflection equivalent.
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2.2 Invariants

There are two parts to any classification question. Constructing a sequence of

Nielsen transformations, for example via a sequence of spaces as described in

Section 1.2.2, proves that a given generating tuple is either reducible or Nielsen

equivalent to the standard generating tuple, but cannot prove that a generating tu-

ple is not reducible, or not equivalent to the standard generating tuple. To prove

this requires the use of suitable invariants. Finding suitable invariants is hard in

general. Here we mention a few known approaches to the problem which we can

try to apply to the case of Coxeter groups.

2.2.1 Previous approaches to invariants

The first observation is that if ψ : G → H is a surjective homomorphism and

Nielsen equivalence in H is already understood, then if the images of two gener-

ating tuples of G under ψ are inequivalent in H , then they must be inequivalent

in G. The converse, however, does not hold: just because the images of two gen-

erating tuples in H are equivalent in H , does not mean the original generating

tuples are equivalent in G. This approach is most commonly applied when H is

the abelianisation ofG and has the same rank, since Nielsen equivalence in finitely

generated abelian groups is well-understood (see Theorem 1.19).

For groups of algebraic rank 2, a better option is called the Higman invariant.

This is a strengthening of Higman’s Lemma [90], which states that for a gener-

ating pair (x1, x2) of a group G, the order of the commutator [x1, x2] is a Nielsen

equivalence invariant.

Definition 2.15. The extended conjugacy class of an element g ∈ G, EC(g), the

union of the conjugacy classes of g and g−1.

LEMMA 2.16 (Higman invariant): Then given a generating pair (x1, x2) of G, the ex-

tended conjugacy class of the commutator [x1, x2] is a Nielsen equivalence invariant.

Proof. This can easily be seen by applying the elementary Nielsen transforma-

tions:
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T1) If (x1, x2) 7→ (x2, x1), then the inverse of [x2, x1] is in EC([x2, x1]) and

[x2, x1]
−1 =

(
x2x1x

−1
2 x−1

1

)−1
= x1x2x

−1
1 x−1

2 = [x1, x2] ∈ EC([x1, x2]).

T2) If (x1, x2) 7→ (x−1
1 , x2), then the conjugate of the inverse of [x−1

1 , x2] by x1
lies in EC([x−1

1 , x2]) and

(
[x−1

1 , x2]
−1
)x1 = ([x−1

1 , x2]
x1
)−1

=
(
x1x

−1
1 x2x1x

−1
2 x−1

1

)−1
= [x1, x2] ∈ EC([x1, x2]).

T3) If (x1, x2) 7→ (x1x2, x2), then

[x1x2, x2] = x1x2x2x
−1
2 x−1

1 x−1
2 = [x1, x2] ∈ EC([x1, x2]).

A much more powerful—albeit computationally more complicated—invariant

was developed by Lustig and Moriah in [78] based on Reidemister-Whitehead tor-

sion. While the general invariant is K-theoretic, given a linear representation of

a group a simplified version of their invariant based on the theory of Fox deriva-

tives [49] can be used. They applied this in their study of Fuchsian groups [77, 80,

79]. In the remained of this Section we outline this simpler approach. We start by

recalling the basics of Fox calculus.

Definition 2.17. Let G be a group, and ZG its integral group ring. Denote by

ε : ZG→ Z the augmentation map, ie the ring homomorphism induced by send-

ing all elements ofG to 1. A mapD : ZG→ ZG is called a derivation if it satisfies

D(u+ v) = D(u) +D(v) and D(uv) = D(u)ε(v) + uD(v) for all u, v ∈ ZG.

The derivations of ZG form a right ZG-module. Ralph H Fox showed that if

G = Fn is the free group generated by X = (x1, . . . , xn), then this ZFn-module is

generated by the n derivations {∂xi | 1 ⩽ i ⩽ n}, which are determined by their

values on the generators of Fn by

∂xixj = δij =

{
1 if i = j

0 otherwise
.

An important property of derivations in the free group ring, from the point of

view of Nielsen equivalence, is that they satisfy a version of the chain rule. Let
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Y = (y1, . . . , yn) be Nielsen equivalent to X so that it is another free basis for Fn.

Then if we define the derivation ∂yiyj = δij , these new derivations satisfy a chain

rule

∂xiu =
n∑
j=1

∂yju · ∂xiyj. (2.1)

Definition 2.18. Given free bases X and Y of Fn, define the Jacobian matrix to be

∂XY := (∂xiyj)ij . In addition, for u ∈ ZFn we write ∂Xu = (∂xiu)i.

We can check is invertible over ZFn with inverse ∂YX = (∂yixj)ij :

∂XY ∂YX = (∂xiyj)ij(∂yixj)ij =

(
n∑
k=1

∂xkyj · ∂yixk

)
ij

(2.1)
= (∂yiyj)ij = (δij)ij,

which is the identity. Moreover, with this notation the chain rule can be expressed

by the matrix equation ∂Xu = ∂Y u·∂XY . This Jacobian matrix captures the Nielsen

transformation between X and Y .

Now letGhave rankn, let 〈S | R〉 be the ‘standard’ presentation forG as chosen

in Section 1.2.2 with #S = n. In what follows, the distinction between a word

over some generating tuple of G and the group element it represents is particularly

important; we emphasise this by denoting words using bold letters, for example

t. Let φ : Fn → G : xi 7→ si be the marking corresponding to S. This marking

induces a surjective ring homomorphism ZFn → ZGwhich is also denoted φ. For

a (freely reduced) word t over S, let t̃ be its lift to Fn, and define

∂St := (φ(∂x1 t̃), . . . , φ(∂xn t̃)).

More generally, if T = (t1, . . . , tn) is a generating tuple of G, and each generator ti
is represented by a word ti, then we get a Jacobian-like matrix ∂ST = (φ(∂xi t̃j))ij .

This matrix depends on the choice of words representing elements of T , but

this dependence is controlled for by the correction term below. To extract a usable

Nielsen equivalence invariant from ∂ST we use a representation η : ZG→Mm(A)

into a matrix ring over a commutative ring A. Notice that this representation in-

duces a map Mn(ZG) → Mmn(A) (where where we replace each entry in an ele-

ment of Mn(ZG) by an A-matrix, and then ‘forget’ this sub-matrix structure).
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Definition 2.19. Let AG ⩽ A∗ be the subgroup of the group of units of A which

is generated by det(η(±s)) for all s ∈ S (since ±s is a unit in ZG and η is a ring

homomorphism, η(±s) must be a unit, and so have determinant in A∗).

Also define the correction ideal IAS to be the ideal of A generated as follows.

ForR ⊂ Fn, the set of relations forG in the standard presentation, consider the set

{η(φ(∂xir)) | 1 ⩽ i ⩽ n and r ∈ R} ⊂ Mm(A). Then IAS is generated by all entries

in the matrices in this set.

Finally, denote by ξ : A→ A/IAS be the quotient map, then ξ(AG) is a subgroup

of the group of units of A/IAS .

THEOREM 2.20 (Straightforward generalisation of Corollary 2.10 in [79]): With no-

tation as above, define

χη : G
n → A/IAS : T 7→ ξ(det(η(φ(∂ST)))).

This function is well-defined in the sense that it does not depend on the choice of lift of T

to T ∈ (Fn)n. If T and S are Nielsen equivalent then χη(T ) ∈ ξ(AG).

Definition 2.21. We call the Nielsen equivalence invariant χη constructed in this

way the (m-dimensional) Lustig-Moriah invariant associated to the representa-

tion η : ZG→Mm(A).

We briefly summarise how Lustig and Moriah apply this to study Fuchsian

groups, which are closely related to two dimensional hyperbolic Coxeter groups.

Recall from Definition 1.21 that a (genus 0) Fuchsian group is given by a presen-

tation of the form

G = 〈s1, . . . , sl | sγ11 , . . . , s
γℓ
ℓ , s1 · · · sℓ〉.

This group acts on the hyperbolic plane H2. They lift the standard representation

G→ PSL2(C) to ρ : G→ SL2(C) (when this is possible) such that

ρ(s1) =

(
e2πi/γ1 0

0 e−2πi/γ1

)
(2.2)

Then they ‘mix’ this with the quotient G → Zp = 〈t | tp〉 for some suitable p ⩾ 3

which divides both γ1 and γ2 (much of their work goes into arranging matters so
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that this is possible). Then they define a representation η : G → SL2(CZp) over

the complex group ring A = CZp via

η(s1) = ρ(s1)

(
t 0
0 t−1

)
, η(s2) =

(
t−1 0
0 t

)
,

and η(si) = ρ(si) for each 3 ⩽ i ⩽ `. Then they could apply Theorem 2.20. Instead

of mapping directly onto the quotient ring by ξ, they define an element denoted

Π(a, b, r) ∈ CZp which is used to annihilate IAS ; for details see the proof of Lemma

6.4 in [79].

2.2.2 Nielsen equivalence invariants for Coxeter groups

The example of dihedral groups shows that in general we cannot hope that all

minimal generating tuples of an arbitrary Coxeter group are equivalent, therefore,

an invariant to distinguish classes is required. The simplest approach is to map to

a suitable quotient. The abelianisation of any Coxeter group is the direct product

of some number of copies of Z2, see Proposition 1.6. This does not give a useful

invariant since in these groups all generating tuples are reducible or equivalent to

the standard one, as shown in Theorem 1.19.

The other natural candidates for quotients might be other Coxeter groups, and

the only Coxeter groups we understand a priori are the dihedral groups, however

Theorem 2.1 shows that these cannot give a useful invariant either, since all non-

minimal generating tuples are Nielsen equivalent.

Some Coxeter groups whose Coxeter rank is greater than 2 nevertheless have

algebraic rank 2, for example, all irreducible finite Coxeter groups have algebraic

rank 2. Therefore one could try to apply the Higman invariant to study minimal

generating sets of these groups.

As none of the elementary approaches to invariants work in general, we turn

to those developed by Lustig and Moriah. The simplest choice of representation

is to use ZW → A where A = ZW ab or ZZ2 (here we equate A with M1(A)). In

the first case AW = {±w}w∈W ab which equals Z2 ×W ab = (ZW ab)∗ by Theorem 6

in [63]; or in the second case AW = {±1,±s̄}where Z2 = {1, s̄}.
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2.2.3 The dihedral case

We can illustrate this invariant in the case of dihedral groups.

Notation 2.22. For elements g, h in a group, we denote the conjugate of g by h,

hgh−1, by hg.

Let W = W (I2(k)) with Coxeter generating pair S = (s1, s2). There is a sur-

jective homomorphismW → {±1} induced by mapping S to−1. Any generating

pair T = (t1, t2) must contain an element which gets mapped to −1, which for

dihedral groups must be a reflection. Possibly after a (T3) transformation we can

assume T is a pair of reflections, and after an overall conjugation, one of these is

either s1 or s2.

Without loss of generality, let t1 = s1. Then we claim we can choose t2 = ws2,

where w = (s2s1)
p for some 0 ⩽ p < k/2. Indeed, t2 is a reflection so can be

written as ws1 or ws2 for some w ∈ W . If k is odd then s1 and s2 are conjugate and
ws1 can be rewritten as w′

s2 for some w′. If k is even then W surjects onto Z2 × Z2

by mapping s1 and s2 to the generators of the first and second factors respectively.

If T = (s1,
ws1) then the image of 〈T 〉 under this surjection is Z2 × {1}, so T does

not generate W , a contradiction.

Considering t2 = ws2 we may as well assume that `(t2) = 2`(w) + 1, ie there

is no cancellation, so that we can write w = · · · s1s2s1. If w has even length, then

it has the form (s2s1)
p for some p ⩾ 0. If w has odd length then we can apply a

Nielsen transformation to replace t2 with s2t2 =
s2ws2, and s2w = (s2s1)

p for some

p ⩾ 0. If p ⩾ k/2 then it is straightforward to check that repeated applications

of the relations s2i and (s1s2)
k allows us to rewrite the word (s2s1)ps2 as (s2s1)p

′
s2 for

some 0 ⩽ p′ < k/2.

We compute φ(∂ST) using t̃1 = x1 and t̃2 = (x2x1)
px2(x1x2)

p = x2(x1x2)
2p:

φ(∂ST) =
(

1 0
s2 (1 + s1s2 + · · ·+ (s1s2)

2p−1) 1 + s2s1 + · · ·+ (s2s1)
2p

)
.

We use the representation η : ZW → ZZ2 = A in this case, setting η(si) = s̄. For k

odd this is the abelianisation, and for k even this is a quotient of the abelianisation
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Z2
2 turns out not to matter. Applying η and taking the determinant we get

det(η(φ(∂ST))) = det
(

1 0
2ps 2p+ 1

)
= 2p+ 1.

Finally we must compute the correction ideal. The Coxeter presentation forW

with respect to S is
〈s1, s2 | s21, s22, (s1s2)k〉,

So IAS is generated by

η(φ(∂x1x
2
1)) = η(1 + s1) = 1 + s = η(1 + s2) = η(φ(∂x2x

2
2)),

η(φ(∂x2x
2
1)) = η(0) = 0 = η(0) = η(φ(∂x1x

2
2)),

η(φ(∂x1(x1x2)
k)) = η

(
1 + s1s2 + · · ·+ (s1s2)

k−1
)
= k,

η(φ(∂x2(x1x2)
k)) = η

(
s1
(
1 + s2s1 + · · ·+ (s2s1)

k−1
))

= ks.

One can then check that IAS = {a + bs | a = b (mod k)}, and so quotienting

ξ : A→ A/IAS we gent an invariant valued in A/IAS = Zk.

In this case AW = {±1,±s} → {±1} = ξ(AW ), so S and T are inequivalent

unless 2p+ 1 = ±1 (mod k), ie unless

p =

{
0 or k

2
− 1 k even,

0 k odd.

Notice that T = (t1, t2) = (s1,
(s2s1)ps2) = (s1, s2(s1s2)

2p) is Nielsen equivalent to

(t1, t1t2) = (s1, (s1s2)
2p+1), where this second generator is a rotation through an-

gle 2π(2p + 1)/k. If 2p + 1 ⩾ k/2 then replacing t1t2 by its inverse t2t1 gives a

rotation by 2π(k − (2p + 1))/k, and so running over 0 ⩽ p < k/2 we see that T is

Nielsen equivalent to (s1, r) where r is a rotation by 2π`/k for 1 ⩽ ` < k/2 where

gcd(`, k) = 1 (if the gcd is not 1, then T does not generate W ).

Now, two of these generating sets are equivalent if and only if either p = 0 or

p = k/2− 1 in the even case. If p = 0 then ` = 1 and t2 = s2 meaning that T = S is

the standard generating set. If k is even then p = k/2− 1 implies 2p− 1 ⩾ k/2, but

again this corresponds to ` = 1. This time t2 = s1s2s1. This gives another proof of

the first part of Theorem 2.1.

What this means is that in the case of dihedral groups, this approach gives a

complete invariant for Nielsen equivalence of minimal generating tuples.
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2.2.4 The general case

In arbitrary Coxeter groups we cannot perform such a detailed analysis since what

we do in the case of dihedral groups is very heavily based on the fact that all ele-

ments inW (I2(k)) can be represented by some reduced alternating word s1s2s1 · · ·

or s2s1s2 · · · . Nevertheless, we can still assess how strong of an invariant this

method gives.

Let (W,S) be a Coxeter system with T another generating tuple of the same

size as S. Index the elements of S as sij such that any other generator si′j′ has

i′ = i if and only if it is conjugate to sij . Using Proposition 1.6, we can denote the

generators of W ab by s̄i such that the map W → W ab maps each sij 7→ s̄i.

Now we want to compute the correction ideal IAS for A = ZW ab. Letting xij be

the generator of Fn such that φ(xij) = sij . For each relation s2ij we lift this to the

word x2ij , then

η(φ(∂xijx
2
ij)) = η(1 + sij) = 1 + s̄i, (2.3)

η(φ(∂xi′j′x
2
ij)) = η(0) = 0, if i 6= i′ or j 6= j′.

Fix a pair of distinct generators sij and si′j′ ; to simplify notation write m = mij,i′j′ .

Then form <∞, we lift the relation (sijsi′j′)
m to the word (xijxi′j′)

m and compute

as follows. If i 6= i′, then m is necessarily even and

η(φ(∂xij(xijxi′j′)
m)) = η(1 + sijsi′j′ + · · ·+ (sijsi′j′)

m−1) =
m

2
(1 + s̄is̄i′), (2.4)

η(φ(∂xi′j′ (xijxi′j′)
m)) = η(sij(1 + sijsi′j′ + · · ·+ (sijsi′j′)

m−1)) =
m

2
(s̄i + s̄i′), (2.5)

η(φ(∂xi′′j′′ (xijxi′j′)
m)) = η(0) = 0, if i′′j′′ 6∈ {ij, i′j′}.

Otherwise, if i = i′ then η(sij) = η(si′j′) = s̄i and

η(φ(∂xij(xijxij′)
m)) = η(1 + sijsij′ + · · ·+ (sijsij′)

m−1) = m, (2.6)

η(φ(∂xij′ (xijxij′)
m)) = η(sij(1 + sijsij′ + · · ·+ (sijsij′)

m−1)) = ms̄i, (2.7)

η(φ(∂xi′′j′′ (xijxij′)
m)) = η(0) = 0, if i′′j′′ 6∈ {ij, ij ′}.
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LEMMA 2.23: These generate the ideal

IAS =

{ ∑
w∈W ab

aww

∣∣∣∣∣ ∑
w∈W ab

(−1)ℓ(w)aw = 0 (mod m0)

}
,

where `(w) is the length of w with respect to the length function on W ab thought of as a

Coxeter group (see Definition 1.9), andm0 is the greatest common devisor of all the entries

in the mij,i′j′ ’s for ij 6= i′j′.

Proof. Call the set in the statement I , which is an ideal. Each of the non-zero

generators in equations (2.3)–(2.7) lie in I , so IAS ⊂ I .

Define the complexity of a non-zero element x =
∑
aww in I to be the the pair

c(x) := (M = max{`(w) | aw 6= 0}, N = #{w | `(w) =M}),

and we order complexities lexicographically. First, given x ∈ I we find y ∈ IAS

such that c(x − y) = (0, 1) which implies that x − y ∈ Z. Assume that c(x) is

greater than (0, 1), and let u be maximal in length such that au 6= 0 in x. Choose

s̄i such that `(s̄iu) < `(u) and call v = s̄iu. Then using the generator (2.3) for s̄i we

know that y1 = auv(1 + s̄i) = auv + auu ∈ IAS . Now replace x with x1 = x− y1. In

x1, the coefficient of u is zero, and the only other coefficient which differs from x

is that of v which satisfies `(v) < `(u). Hence c(x1) is strictly less than c(x).

Repeating this finitely many times we arrive at xn = x− (y1 + · · ·+ yn) having

c(xn) = (0, 1). Since xn still lies in I , this means xn = km0 for some k ∈ Z.

Doing this same process where x is each of the generators in equations (2.4)–

(2.7), we can show that IAS contains every finitemij,i′j′ for ij 6= i′j′. As an example,

consider (2.4). Then

m

2
(1 + s̄is̄i′)−

m

2
s̄i′(1 + s̄i)−

m

2
(−1)(1 + s̄i′) = m.

It follows that IAS contains m0Z, and hence xn. Our original x is now a sum of two

elements of IAS , proving that I = IAS .

Quotienting A by IAS gives a map ξ : ZW ab → Zm0 , where each s̄i in W ab is
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mapped to −1. We could have replaced the representation η at the outset with

ZW → Zm0 without any loss to the power of the invariant (we already saw a

hint of this in the dihedral case). With all this in mind, the next Theorem follows

immediately from the universal property of abelianisation.

THEOREM 2.24: Let η : ZW → A be a 1-dimensional representation of ZW to an abelian

ring A. The Lustig-Moriah invariant χη factors through χηab where ηab : ZW → ZW ab.

In particular χη is valued in some quotient of Zm0 .

The image of AW under ξ is {±1}, so given a generating tuple T with the same

size as S we can conclude that if χηab(T ) 6= ±1 then T and S are not Nielsen equiv-

alent. The upshot is that at best this method yields an invariant which takes values

in the set of cosets Zm0/{±1}. For the dihedral group W (I2(k)), m0 = k and there

were only ϕ(k) Nielsen equivalence classes of generating pairs (where ϕ is Euler’s

totient function), and so this provided a complete invariant. In general, however,

m0 can often be 1, making this invariant useless; and even if m0 > 1, this is likely

to be quite a coarse invariant. We apply this invariant in Example 4.53.

2.2.5 Higher dimensional invariants

It follows from Theorem 2.24 that in order to produce finer invariants from Lustig

and Moriah’s method we need to use a representation of ZW which is at least

two dimensional (and whose image is not abelian). We can try to model their

approach to Fuchsian groups using a mixed representation based on the group

representation G→ PSL2(C).

For Coxeter groups, the analogue is to mix the Tits representation, ρ from The-

orem 1.8 with the quotient of W to an abelian group. Recall the image of ρ lies in

the orthogonal group On(B) of Rn with respect to the symmetric bilinear form B.

Some form of mixing is necessary because otherwise A = R, and the only non-

trivial ideal which IRS could be, is R itself, leading to a single-valued invariant.

For Fuchsian groups, Lustig and Moriah restrict to the case that they could

find a quotientG→ Zp for some p ⩾ 3 (the case of Fuchsian groups with 2 torsion

causes problems, see Section 1 in [79] and references therein). In Coxeter groups
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we have no choice but to map W → Zk2 for some k. For simplicity, let us assume

that (W,S) is an even Coxeter system (so that W had algebraic rank equal to the

Coxeter rank), and we can take k = n by mapping to W ab. Index the elements of

S as si for 1 ⩽ i ⩽ n, and denote their images in W ab by s̄i.

For every generator si, the image ρ(si) is conjugate in GLn(R) to the diagonal

matrix Diag(−1, 1, . . . , 1). Define a mixed representation of ZW by

η : ZW →Mn(RW ab) : si 7→ s̄iρ(si).

A routine computation shows that this does indeed define a representation.

Unfortunately this does not yield a useful invariant. To see this, we can start

to compute IAS . Fix 1 ⩽ i ⩽ n, then η(φ(∂xix
2
i )) = η(1 + si) = I + s̄iρ(si). If

mij = 2 for all j 6= i, then this matrix is Diag(1 + s̄i, . . . ,
ith entry
1− s̄i, . . . , 1 + s̄i), and

otherwise there are some additional off-diagonal entries lying in Rs̄i−{0}. In any

case, IAS contains 1 + s̄i and 1 − s̄i, and hence the whole of R{1, s̄i}. Doing this

for each i, it follows that IAS = A, and so the resulting invariant is single-valued.

This problem seems to be very resistant to trying variations on the theme of a

mixed representation of ρ with ZW → ZW ab—we, at least, have been unable to

overcome it. It seems unlikely therefore that this approach can lead to any kind

of useful Nielsen equivalence invariant based on the Tits representation.

Remark 2.25 (Fuchsian groups). This issue does not arise for Fuchsian groups be-

cause every generator is mapped by the representation to a matrix conjugate to

(2.2), and so writing ζi for some primitive γi-root of unity, the correction ideal is

generated in part by

η(φ(∂xix
γi
i )) = η(1 + si + · · ·+ sγi−1

i )

=

1 0

0 1

+

ζi 0

0 ζ−1
i

+ · · ·+

ζγi−1
i 0

0 ζ
−(γi−1)
i

 = 0.

See the proof of Lemma 6.4 in [79] for details.



Chapter 3

Weyl groups and quiver mutations

IN THIS CHAPTER, WE LOOK at what could be thought of as an application of re-

flection equivalence based on the surprising connection between theory of quiver

mutations, a tool from the theory of cluster algebras, and presentations of Weyl

groups with generating sets consisting of reflections. We discuss this this before

studying reflection equivalence in Chapter 4 because the material here does not

depend on any of the results in that Chapter, and uses completely distinct tools.

In the first Section of this Chapter, we summarise the main definitions and re-

sults we need from [6, 48] on quivers and their associated presentations. A quiver

is simply a directed and edge-labelled simple graph; a mutation of a quiver is a

combinatorial transformation which turns one quiver into another with the same

vertex set. We can associate a Coxeter-like group presentation to a quiver in which

each generator has order 2. Each mutation corresponds to an explicit isomor-

phism between the groups whose presentation is associated to the quivers.

If a quiver is obtained by orienting and modifying the labelling of the Coxeter-

Dynkin diagram of a Weyl group in a certain way, the Coxeter-like presentation is

exactly the Coxeter presentation of the Weyl group. Thus, quiver mutations give

a way to produce other presentations for these Weyl groups. Moreover, the iso-

morphisms associated to the mutations can be expressed as a sequence of partial

conjugations—ie mutations correspond to certain reflection equivalences.

The aim of this Chapter is to investigate the equivalence relation on the set of

reflection generating tuples of Weyl groups associated to quivers which is induced

83
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by mutation. We show that all such generating tuples are mutation equivalent to

a standard one (see Definition 3.11). In many cases all standard generating tuples

are mutation equivalent, see Theorem 3.36 and Corollary 3.37.

It is not true that every reflection generating tuple of a Weyl group arises from

a quiver. However, at least in the case of type A Weyl groups, we are able to

generalise mutation to mutation modulo 2, after which every minimal reflection

generating tuple can be associated to a quiver, and all of these are equivalent under

mutation modulo 2, see Corollary 3.44.

Section 3.3.1 is devoted to stating and proving Proposition 3.18, which is the

main tool for the subsequent main results later in the Chapter. This Proposition

allows us to alter the orientation on quivers whose underlying graph is a tree

without affecting the associated group. The proof of this formed the basis of a

collaborative art project with Melissa Rodd [98].

3.1 Quivers and group presentations

Definition 3.1. A quiver is a finite, edge-labelled, directed graph which contains

no loops or multiple edges. Each edge is labelled by a positive integer called the

weight of the edge; edge labels of 1 are suppressed. Forgetting the orientations

on the quiver Q yields its underlying weighted graph and the underlying graph

is the unlabelled graph one gets by also forgetting the weights on all of its edges.

We call a quiver treelike if its underlying graph is a tree.

There is a way to combinatorially transform a quiver to produce a new quiver.

First introduced in [48], the formulation here is taken from [53].

Definition 3.2. LetQ be a quiver with vertex set V , and let v ∈ V be a vertex. Then

µv(Q) is the quiver with the same vertex set V and edges defined as follows.

1. For each oriented path u
v

w
m n of length 2 through v in Q, we add

an edge u w
mn

2. Reverse the orientation of all edges incident at v

3. If any double edges have been created, remove them as shown in Figure 3.1
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Replace
a

b

by a− b
when a > b.

Replace
a

b

by when a = b.

Replace
a

b

by a+ b

Figure 3.1: Removing double edges when mutating a quiver.

Then µv(Q) is said to be obtained by mutation at vertex v.

It follows from the definition that µv(µv(Q)) = Q.

Remark 3.3 (Mutations and connectivity). A simple observation is that not only

do mutations not change the vertex set, they also do not change the connected

components. That is because if an edge is either added or removed between u and

w by the mutation µv, then by the definition of µv, u and w must be neighbours

of v both before and after mutation. Almost everything we do works equally for

disconnected quivers, however for simplicity we consider only the connected case.

Example 3.4. Consider the following sequence of quivers which illustrates a mu-

tation at the vertex v.

v

2

2

3

3

Q

v

2

2

3

3

2

4

6

3

v

2

2

3

3

2

4

6

3

v

2 5

2

3

2

6

µv(Q)

Figure 3.2: An example of a quiver mutation.

Definition 3.5. Two quivers Q and Q′ with vertex set V are said to be mutation

equivalent if there is a sequence of quivers Q0, Q1, . . . , Qn, and a sequence of ver-

tices v0, v1, . . . , vn−1 ∈ V such that Q = Q0, Q′ = Qn, and, for each 1 ⩽ i ⩽ n,

Qi = µvi−1
(Qi−1). Since mutations are reversible, it follows that mutation equiva-

lence is an equivalence relation.
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Let V be a Coxeter-Dynkin diagram of type A, B, D, E, F , or G, and let V be

the weighted graph obtained from V by replacing each weight 3 edge by a weight

1 edge; each weight 4 edge by a weight 2 edge; and each weight 6 edge with a

weight 3 edge.

A quiver Q is mutation-Dynkin if it is mutation equivalent to some quiver Q′

whose underlying weighted graph is V ; then the type of Q is V . We say that Q′ is

a quiver obtained from V .

THEOREM 3.6 (Proposition 9.7 in [48]): If Q is mutation-Dynkin, then all edges have

weight 1, 2, or 3, and all chordless cycles have one of the forms shown in Figure 3.3 (a cycle

is chordless if it does not backtrack and the subgraph induced by the vertices of the cycle

contains no edges which are not in the cycle). In particular, they are oriented.

2 2
2

2

Figure 3.3: The possible chordless cycles in a mutation-Dynkin quiver.

Given a mutation-Dynkin quiver we can associate to it a group as follows.

Definition 3.7 (Introduction of [6]). Let Q be a mutation-Dynkin quiver with ver-

tex set V , then define the quiver group GQ associated to Q to be generated by the

vertices V , subject to the relations:

1. v2 for all v ∈ V

2. (vu)mvu for all pairs {v, u} ⊂ V with v 6= u, where

mvu =


2 if v u

3 if v u

4 if v u2

6 if v u3

3. (v1v2 · · · vn−1vnvn−1 · · · v2)2 for each chordless cycle
v1 v2 vn v1· · ·

with either all edge weights equal to 1, or the weight of vn v1 is 2
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IfQ is obtained from a Dynkin diagram V , then the presentation defined above

is the Coxeter presentation, so we have an isomorphism GQ
∼= W (V). Note that

GQ only depends on the underlying weighted graph of Q, not on its orientation.

Compare the proof of the following with, for example, Lemma 4.1 in [6].

LEMMA 3.8: Let Q and Q′ be two mutation-Dynkin quivers with the same underlying

graph. Then an isomorphism of the underlying weighted graphs of Q and Q′, restricted to

the vertex sets V Q→ V Q′, induces an isomorphism GQ → GQ′ .

Proof. It is sufficient to show that GQ has the same relations if we change the ori-

entations on the edges of Q. The relations in (1) do not depend on the edges

so are left unchanged. Suppose Q contains and edge v uw which leads to

the relation (vu)mvu . The if we replace the edge with its reverse v uw this

gives the relation (uv)muv . Since w has not changed, muv = mvu, and the relation

(uv)muv = (uv)mvu implies the relation (uv)−mvu = (v−1u−1)mvu = (vu)mvu where

the last equality comes from the relations of type (1). Therefore in the presence of

relations of type (1), relations of type (2) do not depend on the orientations on the

edges.

Finally, suppose Q contains an oriented cycle
v1 v2 vn v1· · · with ei-

ther all edge weights equal to 1, or the weight of vn v1 is 2. If the orien-

tations of one of these edges is reversed in Q′, then they all must be, since The-

orem 3.6 guarantees all chordless cycles are oriented. After flipping all of the

orientations and performing a cyclic permutation we get a cycle of the form

vn vn−1 v1 vn· · ·

with either all edge weights equal to 1, or the weight of v1 vn is 2. The re-

sulting relation of type (3) is (vnvn−1 · · · v2v1v2 · · · vn−1)
2. Writing this out (with

suggestive parentheses)

(vnvn−1 · · · v2)(v1v2 · · · vn−1vnvn−1 · · · v2v1v2 · · · vn−1),

the relation implies all of its cyclic conjugates are also relations. In particular,

(v1v2 · · · vn−1vnvn−1 · · · v2v1v2 · · · vn−1)(vnvn−1 · · · v2),

which equals (v1v2 · · · vn−1vnvn−1 · · · v2)2, the relation of type (3) in GQ.
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The surprising result is that these groups associated to mutation-Dynkin quiv-

ers transform nicely under quiver mutations.

THEOREM 3.9 (Theorem 5.4 in [6]): Let Q be mutation-Dynkin of type V and let v be

a vertex of Q, then there is an isomorphism of groups GQ
∼= Gµv(Q), defined on each

generator u ∈ V Q by

ψv : GQ → Gµv(Q) : u 7→

{
vuv−1 if v u

u otherwise
.

In particular, GQ
∼= W (V) ∼= Gµv(Q).

Note that since Q and µv(Q) have the same vertex set, GQ and Gµv(Q) have the

same tuples as their formal generating tuples (though the elements of these tuples

are different, in general, as elements of the groups).

3.2 Presentation quivers and mutation equivalence

Quiver mutations are not a viable tool to study reflection equivalence in Weyl

groups, because the proof that all generating tuples of reflections associated to

quivers are reflection equivalent is almost tautological, see Proposition 3.16. In-

stead, we can think of the equivalence relation on reflection generating tuples

which arises out of quiver mutations as an a priori stronger relation than refection

equivalence. We make this question precise in Questions 3.14 and 3.15 below.

Assumption 3.10. For the rest of this Chapter, fix a Coxeter-Dynkin diagram V

of type A, B, D, E, F , or G and let V be a set with the same size as V V . Fix an

ordering on V , and we assume that every quiver Q in the sequel has vertex set V .

Recall that the diagram V specifies W = W (V) not only up to isomorphism,

but also a specific Coxeter system, ie (W,V V). In light of Theorem 3.9 we can use

mutation-Dynkin quivers to represent certain markings of a Weyl group where

the generators are reflections.

Definition 3.11. LetQ be a mutation-Dynkin quiver of type V and φ : GQ → W (V)

an isomorphism from the quiver group of Q such that φ(V ) is a subset of the set
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of reflections of W (V). We call the pair (Q, φ) a presentation quiver of type V .

(Q, φ) is treelike if Q is treelike; it is standard if the Q is obtained from V (see

Definition 3.5), and φ maps V → V V , ie maps the generators of GQ to the Coxeter

generators of W (V).

Specifying a presentation quiver (Q, φ) is equivalent to specifying a reflection

generating tuple X = φ(V ) (where the order is induced by the order on V ) to-

gether with a presentation for W (V) of the form given in Definition 3.7. If (Q, φ)

is standard then φ(V ) equals V V up to a graph automorphism, and the presenta-

tion is the usual Coxeter presentation of W (V).

Theorem 3.9 allows us to extend mutations of quivers to mutations of presen-

tation quivers.

Definition 3.12. Given a presentation quiver (Q, φ) and v ∈ V , let Q′ = µv(Q)

(note V Q′ = V by the definition of a mutation), and let ψv : GQ
∼−→ GQ′ be the

isomorphism given by Theorem 3.9. Then define the mutation of (Q, φ) to be

µv(Q, φ) := (Q′, φ ◦ ψ−1
v ), and we write µv(φ) = φ ◦ ψ−1

v .

Two presentation quivers (Q, φ) and (Q′, φ′) are mutation equivalent if there is

a sequence of presentation quivers (Q0, φ0), (Q1, φ1), …, (Qn, φn), and a sequence

of vertices v0, v1, . . . , vn−1 ∈ V such that (Q, φ) = (Q0, φ0), (Q′, φ′) = (Qn, φn), and

for each 1 ⩽ i ⩽ n, (Qi, φi) = µvi−1
(Qi−1, φi−1).

We define µv(φ) in this way so that the following diagram commutes:

Q Q′

GQ GQ′

W (V) W (V)

µv

ψv

ϕ µv(ϕ)

id

LEMMA 3.13: Let (Q, φ) be a presentation quiver and v ∈ V , then µ4
v(Q, φ) = (Q, φ).

Consequently mutation equivalence is an equivalence relation on presentation quivers.

Proof. The second claim follows from the first. Mutations of quivers are involu-

tions so µ2
v(Q) = Q, while µ2

v acts on φ by conjugating every neighbour of v in
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Q by v. In fact, one can check that µ2
v(Q, φ) = (Q, φ ◦ αv) where αv is the inner

automorphism of GQ associated to v. Since v has order 2 as an element of GQ,

µ4
v(φ) = φ.

Mutation equivalence of presentation quivers induces an equivalence relation

on generating tuples of reflections forW (V) coming from mutation-Dynkin quiv-

ers. We call this relation mutation equivalence as well. A priori this is a proper subset

of the set of reflection generating tuples of size #V V , but on this subset, again a

priori, mutation equivalence is a stronger relation than reflection equivalence.

As an example, let (Q, φ) be a standard presentation quiver, and α an inner au-

tomorphism ofW (V). Then the generating tuples associated to (Q, φ) and (Q,α◦φ)

are reflection equivalent, however it is not at all clear that they are mutation equiv-

alent. This is because mutations do not allow freedom over which partial conju-

gations are performed, since these are dictated by the orientation on Q. In addi-

tion, mutations usually change the underlying weighted graph of Q, and it is not

immediately clear how to engineer a sequence of mutations which return some

mutation ofQ, to a quiver whose underlying weighted graph is V , in a way which

retains control over how φ changes (see Definition 3.5 for the definition of V).

This motivates the following questions.

Question 3.14. Can every reflection generating tuple with size #V V of a Weyl

group W (V) be represented by a presentation quiver of type V?

Question 3.15. When are two reflection generating tuples which are represented

by presentation quivers of type V mutation equivalent? In particular, if two such

tuples are reflection equivalent, are they also mutation equivalent?

At the end of this Chapter (Section 3.5), we look at the first question for V = An,

and we see that the answer is no, however we can generalise our definitions to

work with arbitrary reflection generating tuples. Until then, we focus on answer-

ing when two presentation quivers of type V are mutation equivalent. The fact

that mutation equivalence is at least as strong as reflection equivalence follows

immediately from the definition; in fact, we can prove that any two presentation

quivers of type V are reflection equivalent.
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PROPOSITION 3.16: Let (Q1, φ1) and (Q2, φ2) be two presentation quivers of type V , then

the generating tuples they represent are reflection equivalent.

Proof. Any two generating tuples represented by standard presentation quivers

differ by a graph automorphism and the orientations on the quiver. This means

the generating tuples differ by a permutation, and so are equivalent under a trans-

formation of type (T1). Thus, it suffices to show that any generating tuple coming

from a presentation quiver (Q, φ) is reflection equivalent to a generating tuple

coming from a standard generating tuple.

By definition,Q is mutation equivalent to some orientation of V ,Q′. Therefore,

after these mutations, (Q, φ) is mutation equivalent to (Q′, φ′) where φ′ : GQ′ →

W (V) and (GQ′ , V ) is a Coxeter system for GQ′ ∼= W (V). After choosing some

isomorphism between the underlying weighted graph of Q′ and V (the choice is

arbitrary), we can interpret φ′ as an automorphism of W (V) which preserves the

set of reflections. Then by Proposition 3.34, this automorphism can be expressed

as a composition of an inner automorphism and a graph automorphism.

We can apply a sequence of (T4) moves to the image of φ′ to undo the inner

automorphism and replace (Q′, φ′) with (Q′, φ′′) where φ′′ : V → V V , and this

presentation quiver is standard.

3.3 Defining mutations of unoriented graphs

The main step in understanding when two presentation quivers are mutation

equivalent to each other is to gain control over when and how we can perform

mutations on (Q, φ) which behave as we want them to on φ. The impediment to

this is the orientation on Q which dictates everything about µv(φ). We want to be

able to perform mutations on (Q, φ) to change the orientation onQ arbitrarily, but

which leave φ unchanged.

If we can do this, then we can change the orientations on the edges which

meet a vertex v so that the isomorphism ψv from Theorem 3.9 consists of exactly

the partial conjugations we want. It is reasonable to hope this may sometimes be

possible. This is because the definition of the group GQ associated to a quiver
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Q only depends on the underlying weighted graph of Q. We can simplify the

amount of information we need to keep track of by defining mutations on unori-

ented weighted graphs.

We can make this more formal as follows. Let Υ be a finite weighted graph

with no edge loops or multiple edges and letQ(Υ) be the set of all quivers whose

underlying weighted graph isΥ. If everyQ ∈ Q(Υ) is mutation-Dynkin then there

is a canonical isomorphism between GQ and GQ′ for any Q,Q′ ∈ Q(Υ) which is

induced by the identity map on Υ, see Lemma 3.8. Denote byGΥ the group (up to

canonical isomorphism) associated to every quiver in Q(Υ). Now fix an isomor-

phism φ : GΥ → W (V) such that φ(V ) lies in the set of reflections. This φ gives rise

to a presentation quiver (Q, φ) for each Q ∈ Q(Υ). Here we are suppressing the

canonical isomorphisms to simplify notation.

Consider the graph which has vertex set {(Q, φ) | Q ∈ Q(Υ)} and an edge

between any pair of presentations which are related by a single mutation—in par-

ticular, these mutations change the orientations on the quivers without changing

either the underlying weighted graph or the map φ. We want to show that this

graph is connected. Then we can freely change the orientation onQwithout affect-

ing the rest of the presentation quiver, giving us the control we need to perform

any ‘non-trivial’ mutation.

Note that it can only be the case if Υ contains no cycles, otherwise Q(Υ) con-

tains quivers with unoriented cycles which cannot be mutation-Dynkin by The-

orem 3.6. Since Υ contains no cycles, its underlying graph must be a forest. For

simplicity, set us assume that Υ is connected. It follows from the classification of

finite Coxeter groups (see Table 1.1) that if Υ is a tree and some quiver in Q(Υ) is

mutation-Dynkin, then Υ = V for some diagram of type A, B, D, E, F , or G.

If we can show that the graph described above is connected, then we can define

mutations of pairs (Υ, φ)without the need for orientations. In preparation for this,

and restricting to the case that Υ = V , we make the following definition.

Definition 3.17. A presentation Dynkin diagram is a pair (V , φ) such that φ is an

isomorphism GV → W (V) which maps V to the set of reflections. We call (V , φ) a

standard presentation Dynkin diagram of type V if φ(V ) = V V .
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3.3.1 Forgetting orientations on treelike quivers

We now prove that given a presentation quiver (Q, φ) such that the underlying

weighted graph ofQ is V , we can freely change the orientation onQ by a sequence

of mutations which do not affect the underlying graph, or the map φ. Our proof

does not rely on any special properties of mutation-Dynkin quivers, only on the

fact that the quiver is tree-like—we phrase the following Proposition to reflect

that.

PROPOSITION 3.18: Let (Q1, φ1) and (Q2, φ2) be two treelike presentation quivers with

the same underlying weighted graph, and φ1 = φ2, in other words (Q1, φ1) and (Q2, φ2)

differ only by the orientations on Q1 and Q2. Then (Q1, φ1) and (Q2, φ2) are mutation

equivalent by a sequence of mutations which do not change either the underlying weighted

graph of Q1 or φ1 at any stage.

Assumption 3.19. Choose a distinguished vertex v0 ∈ V . In this Section all quivers

share this same underlying graph and distinguished vertex.

Definition 3.20. Let Q be a treelike quiver with distinguished vertex v0, then for

any vertex v ∈ V there is a unique unoriented path between v0 and v which does

not backtrack, denote this by [v0, v]. The height of a vertex v ∈ V in Q is

hQ(v) :=
∑

e∈[v0,v]

OQ(e)

where the sum is taken over all edges e in the path [v0, v], and

OQ(e) :=

{
1 if e is oriented towards v0
−1 if e is oriented away from v0

Note that this definition depends on the choice of v0. However, since we have

fixed this choice at the start we are suppressing it in the notation to make our

expressions visually simpler. We then write

H(Q) :=
∑
v∈V

hQ(v)

A vertex v ∈ V is prominent in Q if hQ(v) > hQ(u) for all vertices u adjacent to v

in Q.
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Let Q′ be another quiver, we say that Q dominates Q′, and write Q � Q′, if

hQ(v) ⩾ hQ
′
(v) for all v ∈ V .

Note that Q � Q′ implies H(Q) ⩾ H(Q′). It is useful to visualise a quiver by

extending hQ to a graph hQ : Q → R over Q, by mapping edges linearly between

the heights of their endpoints. Then a vertex is prominent if it is a local maximum

of this graph, and one quiver dominates another if the graph of one is higher than

the graph of the other, see Figure 3.4.

Definition 3.21. Denote by qQ the quiver in which all edges are oriented towards

v0, and by Q̂ the quiver in which all edges are oriented away from v0.

2

1

he
ig

ht

0

−1

hQ

hQ
′

v0

v0

v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

Q

Q′

Figure 3.4: Two quivers and their corresponding graphs. The vertices v1 and v4 are promi-
nent in Q, which dominates Q′.

LEMMA 3.22: The relation� defines a partial ordering onQ(V). For any quiverQ in this

poset, Q̂ � Q � qQ, meaning this poset is a bounded lattice. Additionally, every chain has

length bounded by (H( qQ)−H(Q̂))/2.

Proof. We need to show that if Q � Q′ and Q′ � Q then Q = Q′. Let e be an edge

in the underlying graph, and let ι(e) be the endpoint closest to v0, and τ(e) its

other endpoint. By the hypothesis hQ(ι(e)) = hQ
′
(ι(e)) and hQ(τ(e)) = hQ

′
(τ(e))

so hQ(τ(e))− hQ(ι(e)) = hQ
′
(τ(e))− hQ′

(ι(e)). But by the definition of hQ and hQ′

this implies OQ(e) = OQ′
(e), as required.
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For all v ∈ V ,

hQ̂(v) =
∑

e∈[v0,v]

(−1) ⩽
∑

e∈[v0,v]

OQ(e) ⩽
∑

e∈[v0,v]

(+1) = h
qQ(v)

and so H(Q̂) ⩽ H(Q) ⩽ H( qQ) for all Q. Moreover, if Q′ ≺ Q then H(Q′) < H(Q),

so all chains have length bounded byH( qQ)−H(Q̂). It follows from equations (3.1)

and (3.3) below, that chain length is bounded by (H( qQ)−H(Q̂))/2.

Definition 3.23. Following Section 9.1 of [48], we say that a a mutation is shape

preserving if it does not change the underlying weighted graph of the quiver.

It follows from the definition that the mutation at vertex v is shape preserv-

ing if and only if either all edges incident to v are oriented towards v, or all are

oriented away from v. Assume that the mutation µv of Q is shape preserving,

and interpret it as a mutation of a presentation quiver (Q, φ). By Theorem 3.9,

ψv : GQ → Gµv(Q) = GQ is the identity map if and only if all edges incident to v

are oriented away from v, or equivalently, if v is prominent.

We can therefore rephrase Proposition 3.18 as follows. Any two treelike quiv-

ers with the same underlying graph are mutation equivalent via a sequence of

mutations at prominent vertices. Note that this is a stronger version of the last

part of Proposition 9.2 in [48]. The effect of mutating a quiver at a prominent ver-

tex v is merely to reorient all of the edges incident to v so that they point towards

v. In Figure 3.4, mutating Q at the prominent vertex v1 replaces the peak in the

height graph with a valley.

In order to prove this, we consider what happens with the height function

when we perform mutations at prominent vertices. We consider three operations.

The first we call gradient ascent, which allows us to find a prominent vertex in

some quiver which dominates another. We call the second erosion and it allows us

to replace a prominent vertex with a ‘valley’ while preserving the property of the

eroded quiver dominating another. Finally we have elevation which corresponds

to eroding v0, but has the effect of raising the height of the rest of the quiver.

LEMMA 3.24 (Gradient ascent): Let u v be an edge inQ, then hQ(v) = hQ(u) + 1.

If Q � Q′, then there is a vertex v̂ ∈ V − {v0} such that v̂ is prominent in Q and

hQ(v̂) > hQ
′
(v̂).
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Proof. There are two cases:

if u ∈ [v0, v] then

hQ(v) =
∑

e∈[v0,v]

OQ(e)

=
∑

e∈[v0,u]

OQ(e) +OQ(u v)

= 1 + hQ(u),

otherwise, if v ∈ [v0, u] then

hQ(v) =
∑

e∈[v0,v]

OQ(e)

=
∑

e∈[v0,u]

OQ(e)−OQ(v u)

= hQ(u) + 1

If Q � Q′ there is some vertex u ∈ V such that hQ(u) > hQ
′
(u). If u is promi-

nent, set v̂ = u. Otherwise there is some neighbour v of u such that u v in

Q. We claim hQ(v) > hQ
′
(v). Indeed

hQ(v) = hQ(u) + 1 > hQ
′
(u) + 1 ⩾ hQ

′
(v)

where the second inequality comes from the fact hQ′
(v) = hQ

′
(u) ± 1, depending

on the orientation of the edge between u and v in Q′.

Now, if v is prominent, set v̂ = v. Otherwise we repeat this process start-

ing with v. We find a prominent vertex after a finite number of steps since the

underlying graph of Q is a finite tree. Necessarily v̂ 6= v0 since by definition

hQ(v0) = 0 = hQ
′
(v0).

LEMMA 3.25 (Erosion): Let v̂ ∈ V − {v0} be prominent in Q, then Q � µv̂(Q). If

Q � Q′ let v̂ ∈ V be the vertex from Lemma 3.24, then Q � µv̂(Q) � Q′.

Proof. For v ∈ V ,

hµv̂(Q)(v) =

{
hQ(v) if v 6= v̂

hQ(v)− 2 if v = v̂
(3.1)

so indeed Q � µv̂(Q).

Now suppose, for a contradiction, that µv̂(Q) ⪰̸ Q′. Then for all v ∈ V − {v̂},

hµv̂(Q)(v) = hQ(v) ⩾ hQ
′
(v) so necessarily hµv̂(Q)(v̂) < hQ

′
(v̂) < hQ(v̂). It follows

from (3.1) that
hQ

′
(v̂) = hµv̂(Q)(v̂) + 1

but this is not possible, because in µv̂(Q) every edge incident to v̂ is oriented to-

wards it. A simple calculation shows that if u is a neighbour of v̂ in µv̂(Q) then
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hµv̂(Q)(u) = hµv̂(Q)(v̂)+1, but we saw that hµv̂(Q)(u) = hQ
′
(u). Therefore inQ′, v̂ and

u are neighbouring vertices with the same height, contradicting Lemma 3.24.

LEMMA 3.26 (Elevation): If Q 6= qQ, there is a quiver Qelev which is mutation equivalent

to Q by a sequence of mutations at prominent vertices such that H(Q) < H(Qelev).

Proof. We say that a vertex v ∈ V is visible from v0 on Q if [v0, v] is oriented, and

directed towards v0. Define Qvis to be the the sub-quiver of Q induced by the set

of visible vertices. If Qvis is the single point v0, then v0 is prominent and write

Q′ = Q. Otherwise every leaf in Qvis (ie every vertex of valence 1) is prominent.

Let v be such a leaf in Qvis and consider µv(Q); v is no longer visible, but every

other vertex which was visible in Q is still visible in µv(Q), and there are no new

visible vertices. Therefore, (µv(Q))vis ⊂ Qvis is the subgraph obtained by remov-

ing v and the single edge incident to it. We can therefore inductively reduce the

number of visible vertices by mutating at the leaves of the sub-quiver of visible

vertices. We end up with a quiver Q′, which is mutation equivalent to Q, and in

which Q′
vis = {v0}. Note that in doing this, we perform a mutation at each vertex

in V Qvis − {v0} exactly once, and at no other vertex. Now, v0 is prominent in Q′.

We can compute H(Q′) in terms of H(Q) by repeated applications of (3.1):

H(Q′) = H(Q)− 2#(V Qvis − {v0}) (3.2)

Since v0 is prominent in Q′, define Qelev := µv0(Q
′). The height of v0 is 0 by

definition, so ‘eroding’ v0 increases the height of every other vertex by 2:

hQelev(v) = hQ
′
(v) + 2 ∀v ∈ V − {v0} (3.3)

Combining (3.2) and (3.3) we can compare H(Q) and H(Qelev):

H(Qelev) =
∑
v∈V

hQelev(v)

= H(Q′) + 2#(V − {v0})

= H(Q) + 2#(V − V Qvis)
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So H(Qelev) ⩾ H(Q), with equality if and only if V = V Qvis, but this is the case

only if Q = qQ.

Proof of Proposition 3.18. Let Q1 and Q2 be two quivers with the same underlying

tree, we perform a series of mutations at prominent vertices starting with Q1 to

reachQ2. IfQ1 � Q2 then we can apply Lemma 3.25 repeatedly, necessarily ending

at Q2 after finitely many mutations by the final part of Lemma 3.22.

Suppose therefore that Q1 ⪰̸ Q2, then in particular Q1 6= qQ since qQ � Q for all

quivers Q with the same underlying graph. This also means that H( qQ) ⩾ H(Q)

for all quiversQ. It follows that we can apply Lemma 3.26 a finite number of times

to produce a quiver Q′
1 which dominates Q2, and then apply the argument from

the first paragraph.

Although we make no further use of the following, we remark that Proposi-

tion 3.18 can be partially generalised to non-treelike presentation quivers. There is

no hope of a complete generalisation as the following example demonstrates. Fig-

ure 3.5 shows two mutation-Dynkin quivers with the same underlying weighted

graph which are mutation equivalent, however every mutation of either quiver

changes that underlying weighted graph.

v1
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v3
µv2
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v2

v3

µv1
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v2

v3

µv2

v1

v2

v3

µv1
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v2

v3

µv2

v1

v2

v3

Figure 3.5: Two orientations of the same weighted graph, which are inequivalent under
shape preserving mutations.

Definition 3.27. Given a quiver Q, call a vertex v ∈ V core in Q if there is some

chordless cycle in Q which passes through v. If we consider the sub-quiver ob-

tained by deleting every edges which is contained in any chordless cycle, we get a

quiver whose underlying graph is a forest which we call the non-core sub-quiver

of Q.

We can now prove the following Corollary of Proposition 3.18.
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COROLLARY 3.28: Let (Q, φ) be a presentation quiver, and consider a componentQ′ of the

non-core sub-quiver of Q. This is a tree in which we choose the distinguished vertex v0 to

be the unique core vertex in Q′. Let Q′′ be another quiver with the same underlying graph

as Q′. If Q′ dominates Q′′ then we can perform a sequence of shape preserving mutations

at vertices away from v0 which turn Q′ into Q′′. Moreover, this sequence can be chosen so

that performing it on (Q, φ) leaves φ unchanged as well.

The proof is the same as that for Proposition 3.18, except that we cannot per-

form mutations at v0 since these are necessarily not shape preserving. This restric-

tion means that we cannot perform elevations, only erosions, and hence Q′ must

dominate Q′′.

3.4 Mutation versus reflection equivalence

In this Section we use the freedom to change the orientation on a treelike presen-

tation quiver to prove that every presentation quiver is mutation equivalent to a

standard presentation quiver.

3.4.1 Mutations of presentation Dynkin diagrams

By definition, Q is mutation equivalent to some orientation of V and so, after ap-

plying a suitable sequence of mutations to (Q, φ), we reduce to the case that the

underlying weighted graph of Q is V . By Proposition 3.18 we can change the ori-

entation on Q freely without changing φ, and so we can forget these orientations

and replace (Q, φ) by the presentation Dynkin diagram (V , φ), see Definition 3.17.

We want to define mutations of a presentation Dynkin diagram (V , φ). Such

mutations must necessarily be induced by shape preserving mutations of some

orientation (Q, φ) of (V , φ) so that we can continue to apply Proposition 3.18 af-

terwards. From the discussion following Definition 3.23, a mutation of Q at the

vertex v is shape preserving if and only if all edges incident to v are pointing either

towards v or all pointing away. If the latter, then the mutation does not change φ

and so has no effect on (V , φ).
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Pick a vertex v of V . We define µv(V , φ) as follows. Choose an orientation of

V , Q, such that every edge incident to v is pointing towards v. Now, mutating

at v gives a new presentation quiver µv(Q, φ) = (µv(Q), φ ◦ ψ−1
v ), and forgetting

the orientation on µv(Q) we get a new presentation Dynkin diagram by defining

µv(V , φ) := (V , φ ◦ ψ−1
v ). Note that this definition does not depend on the choice

of the orientations on the edges of Q which do not meet v.

Definition 3.29. Let (V , φ) be a presentation Dynkin diagram, and v ∈ V , the

mutation of (V , φ) at v is the presentation Dynkin diagram (V , φ ◦ ψ−1
v ) where

ψv ∈ Aut(GV) is the automorphism of GV defined on V by

ψv(u) :=

{
vuv−1 if u is adjacent to v
u otherwise

We define mutation equivalence in the same way as Definition 3.12.

Remark 3.30 (Mutations and inner automorphisms). Note thatψv, as defined above,

agrees with the isomorphism GQ → Gµv(Q) coming from Theorem 3.9, when all

edges incident to v are directed towards v in Q. We call it an automorphism be-

cause there is a canonical isomorphism Gµv(Q) → GQ induced by µv, since µv is

shape preserving (see Lemma 3.8). There is a natural identification ofGV withGQ

since Q is an orientation of V . Therefore, we can view the composition of ψv with

this canonical isomorphism as an automorphism of GV .

If u is not adjacent to v in V , then that means that u and v commute as elements

of W (V), so u = vuv−1. We can therefore express ψv more concisely by

ψv : u 7→ vuv−1 ∈ Inn(GV).

If two presentation Dynkin diagrams are mutation equivalent, then we can

‘lift’ the sequence of mutations to a sequence of mutations of presentation quiv-

ers by choosing some orientation on each of the presentation Dynkin diagrams.

Between each lift of presentation Dynkin diagram, perform a suitable sequence

of shape preserving mutations coming from Proposition 3.18. In this way, two

presentation quivers which have V as their underlying weighted graph are mu-



WEYL GROUPS AND QUIVER MUTATIONS 101

tation equivalent by a sequence of shape preserving mutations if and only if the

corresponding presentation Dynkin diagrams are mutation equivalent.

Therefore, we need to show that all presentation Dynkin diagrams are muta-

tion equivalent to a standard one.

Definition 3.31. Let (V , φ) be a presentation Dynkin diagram and w ∈ GV with

w = v1 · · · vk for vi ∈ V , then define the sequence of mutations

µw(V , φ) := (µvk ◦ · · · ◦ µv1)(V , φ) = (V , φ ◦ ψ−1
v1
◦ · · · ◦ ψ−1

vk
)

One can easily check that this is well-defined using Remark 3.30, since for any

w′ ∈ GV
(φ ◦ ψ−1

v1
◦ · · · ◦ ψ−1

vk
)(w′) = φ

(
ww′w−1

)
which depends only on the element w, and not on the word representing it. If we

write (αw : g 7→ wgw−1) ∈ Inn(GV) for the inner automorphism associated to w,

then µw(V , φ) = (V , φ ◦ αw).

3.4.2 Automorphisms of finite Coxeter groups

In order to understand when a presentation Dynkin diagram is mutation equiv-

alent to a standard one, and when standard presentation Dynkin diagrams are

equivalent, we need to understand the automorphism groups of Weyl groups.

Here we summarise what happens for all irreducible finite Coxeter systems. In

particular, we look at those automorphisms which preserve the set of reflections

in a given Coxeter system for a Weyl group. The automorphism groups for irre-

ducible finite Coxeter groups were computed by William Franzsen [50, 51].

Definition 3.32. Any graph automorphism of the Coxeter diagram of a Coxeter

system (W,S) induces an automorphism of W , and we call such automorphisms

graph automorphisms of W . An automorphism is called inner by graph if it lies

in the subgroup Inn(W )⋊Gr(W,S) ⩽ Aut(W ) generated by the subgroup of inner

automorphisms, together with the group of graph automorphisms of W .

Note that every such automorphism can be written as a product γ ◦ αw where

γ ∈ Gr(W,S) and αw ∈ Inn(W ) is the inner automorphism associated to some

w ∈ W .
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PROPOSITION 3.33 (Corollary 19 in [51]): If the Coxeter diagram of a (possibly infi-

nite) Coxeter system (W,S) is a forest, and all edge labels lie in the set {3, 4, 6}, then all

automorphisms of W which preserve the set of reflections are inner by graph.

Note that Weyl groups are precisely the finite irreducible Coxeter groups which

have all edge labels in the set {3, 4, 6}. The Proposition below follows from the

classification of automorphisms of irreducible finite Coxeter groups.

PROPOSITION 3.34 (Theorem 31 in [51]): Let (W,S) be an irreducible finite Coxeter

system and let α ∈ Aut(W ) preserve the set of reflections of (W,S).

• If (W,S) has type An, Bn, D2k+1, or En then α ∈ Inn(W ).

• If (W,S) has type D2k for k ⩾ 3, F4, or G2 then α ∈ Inn(W )⋊ 〈γ〉 where γ is the

non-trivial graph automorphism.

• If (W,S) has type D4 then α ∈ Inn(W ) ⋊ S3 where S3 is the symmetric group

which is the group of graph automorphisms of W (D4).

• If (W,S) has type Hn then α ∈ Inn(W ) ⋊ 〈ρ〉 where ρ is an exceptional automor-

phism coming from the fact that W (Hn) does not satisfy Proposition 3.33.

• If (W,S) has type I2(m) then every automorphism preserves the set of reflections,

and we can write Aut(W ) = Aut1(W )〈β〉, where β cyclically permutes the reflec-

tions in the usual action of W (I2(m)) on S1, and

Aut1(W ) = {αh | gcd(h,m) = 1} ∼= Z×
m,

where αh(s1) = s1 and αh(s2) = βh(s1) (taking S = {s1, s2} and s2 := β(s1)).

Geometrically, W (Hn) acts on an (n− 1)-sphere and the generators are reflec-

tions in great circles. These bound a simplex with dihedral angles {π/2, π/3, π/5}.

The exceptional automorphism ρ in the case of H3 comes from choosing different

generating reflections whose corresponding great circles bound a simplex with

dihedral angles {π/2, π/3, 2π/5} (this generating triple is shown in Figure 4.17d).

The automorphism ρ is defined explicitly in the proof of Proposition 32 in [51].
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3.4.3 The main Theorem

We can now state and prove the main result of this Chapter.

PROPOSITION 3.35: Let (V , φ) be a presentation Dynkin diagram, then it is mutation

equivalent to a standard presentation Dynkin diagram.

Proof. By Theorem 2.2, φmaps the set of reflections of the Coxeter system (GV , V )

to the set of reflections of W (V). It follows that there exists some automorphism

α ∈ Aut(W (V)) which maps φ(V ) to V V bijectively. Proposition 3.33 guarantees

that this automorphism can be decomposed as α = γ ◦ αw for some graph auto-

morphism γ ∈ Gr(W ) and αw ∈ Inn(W (V)) for some w ∈ W (V). Let w′ = φ−1(w),

then we can apply the mutation

µw′(V , φ) = (V , φ ◦ αw′).

Now for any v ∈ V , φ(αw′(v)) = φ(w′vw′−1) = αw(φ(v)) ∈ V V , and hence µw′(V , φ)

is standard.

This Proposition now immediately implies the following Theorem.

THEOREM 3.36: All presentation quivers of type V are mutation equivalent to a standard

one.

COROLLARY 3.37: If V is An, Bn, D2k+1, or En then all presentation quivers of type V

are mutation equivalent.

Proof. It suffices to show that any two standard presentation Dynkin diagrams are

mutation equivalent in these cases. If (V , φ) and (V , φ′) are two standard presen-

tation Dynkin diagrams, then φ−1 ◦ φ′ is a reflection preserving automorphism of

GV . By Proposition 3.34, this automorphism is inner, so we can find w ∈ GV such

that φ′ = φ ◦ αw. It follows that µw(V , φ) = (V , φ′) as required.

3.5 The type A case

We have shown that all presentation quivers of type An for fixed n are mutation

equivalent, which answers Question 3.15 for this type. That still leaves Ques-
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tion 3.14, which we answer here. Fix an identification of W (An) with the sym-

metric group Sn+1; for concreteness we map the Coxeter generator si to the trans-

position (i j+1) for each 1 ⩽ i ⩽ n. Instead of starting with a presentation quiver

(Q, φ) where we assume a priori that Q is mutation-Dynkin, we want to associate

a pair (Q, φ) to a minimal reflection generating tuple T where Q is some (not nec-

essarily mutation-Dynkin) quiver, and φ in some sense represents the marking

associated to T .

3.5.1 The graph of a reflection generating tuple

The reflections in W (An) correspond to the transpositions in Sn+1. Consider a tu-

ple of n transpositions, T = (t1, · · · , tn), then we can associate a weighted graph

VT to T as follows. Start with the same vertex set V of size nwe have used through-

out (recall V has been given some order), and define φ : V → W (An) by mapping

the ith vertex to ti. VT will have an edge between vertices v and u whenever φ(v)

and φ(u) do not commute. In that case φ(v)φ(u) = (a b)(b c) = (a b c) has order 3.

We therefore give this edge weight 1 (compare with the definition of V in Defini-

tion 3.5. If (W (An), T ) is a Coxeter system, VT = V).

LEMMA 3.38: Let T be a tuple of reflections, and VT the associated weighted graph. Then

T generates W (An) if and only if VT is connected, and for each 1 ⩽ j ⩽ n + 1 there is

some ti ∈ T such that ti(j) 6= j.

Proof. The only if direction is straightforward. For the if direction, we show that

for each 1 ⩽ i ⩽ n, T is reflection equivalent to a tuple which contains si = (i i+1).

It follow that the group generated by T contains {s1, . . . , sn} as a subset, and hence

the whole of Sn+1.

Fix an index i, and let d be the minimum combinatorial distance in VT between

vertices u and v such that φ(u)(i) 6= i and φ(v)(i + 1) 6= i + 1. If d = 0, then u = v

and φ(u) = (i i+ 1), so T already contains si.

Assume therefore that d > 0, and consider a path between u and v of length d,

and label the vertices u = u0, u1, . . . , ud = v. The sequence of transpositions given
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by φ(u0), φ(u1), . . . , φ(ud−1), φ(ud) has the form

(i a0), (a0 a1), . . . , (ad−2 ad−1), (ad−1 i+ 1).

Since these are all elements of T and the path has minimal length, we know that

i, a1, . . . , ad−1, i+ 1 are all pairwise distinct. Indeed, if aj = ak for some j 6= k, say,

then (aj aj+1) and (ak−1, ak) do not commute, and the edge between uj+1 and uk

shortcuts the path. Denote the elements of this sequence by ti0 , ti1 , . . . , tid .

Now we transform T by setting t′id = tid = (ad−1 i+1), and iteratively replacing

tij by its conjugate conjugate t′ij = t′ij+1
tij t

′−1
ij+1

, for d− 1 ⩾ j ⩾ 1. Call the resulting

tuple T ′; one can check that the sequence of elements t′i0 , t
′
i1
, . . . , t′id it contains has

the form
(i i+ 1), (a0 i+ 1), . . . , (ad−2 i+ 1), (ad−1 i+ 1).

Thus, T ′ is a tuple obtained from T by a sequence of partial conjugations, and

contains si = (i i+ 1), as required.

The statement of this Lemma implicitly assumes that T is minimal since we

defined the graph VT to have a vertex set of size n, however dropping this hy-

pothesis, the proof still goes through unaltered.

3.5.2 Generalised presentation quivers and mutation modulo 2

Given a minimal reflection generating tuple, we want to know whether it is pos-

sible to orient VT to produce a mutation-Dynkin quiver of type An. For n ⩽ 3 one

can check explicitly that this is always possible—in general it is not. As an exam-

ple, let n = 4, and consider T = ((1 2), (1 3), (1 4), (1 5)). The associated weighted

graph is complete, so by Lemma 3.38, T generates S5, however any orientation of

VT must contain an unoriented 3-cycle, see Figure 3.6. Thus, by Theorem 3.6, any

orientation of VT is a quiver which is not mutation-Dynkin.

This problem can be repaired, however, by reducing edge weights modulo 2.

We sketch this only in the case of type A.

Definition 3.39. Let T be a minimal reflection generating tuple for W (An), then a

generalised presentation quiver associated to T is a pair (Q, φ) where the under-

lying weighted graph of Q is VT , and φ is the map from V → W (An) which maps
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Figure 3.6: The possible orientations of the complete graph on four vertices up to graph
automorphisms.

each vertex ofQ to the corresponding element of T . For a vertex v ∈ V , define the

mutation of Q modulo 2, µ(2)
v (Q) to be the quiver obtained by first mutating Q at

v as usual, and then deleting any edges of weight 2 which are produced. We ex-

tend this to a mutation of (Q, φ) modulo 2 by setting µ(2)
v (Q, φ) = (µ

(2)
v (Q), µv(φ)),

where µv(φ) is the map defined in Definition 3.12 restricted to V .

LEMMA 3.40: Let (Q, φ) be a generalised presentation quiver associated to a generating

tuple T , and for v ∈ V , let Tv be the image of µv(φ) in W (An). Then µ(2)
v (Q, φ) is athe

generalised presentation quiver associated to Tv.

Proof. We need to prove that the underlying weighted graph of µ(2)
v (Q) is VTv , and

µv(φ) is the map associated to VTv . Recall that all edges in Q have weight 1.

First consider a neighbour u of v. If φ(v) = (a b) then without loss of gener-

ality we can assume that φ(u) = (b c) for some c 6= a. In µ
(2)
v (Q) there is still an

edge between v and u with the same weight. It follows from the definition that

µv(φ)(v) = (a b), and µv(φ)(u) is either (b c) or (a c). In either case there is still an

edges between v and u with weight 1.

Now let w be another neighbour of v, and write φ(w) = (a d) or (b d) for some

d. The only case which we need to consider which is not covered by Theorem 3.9

is when v, u, and w form an unoriented cycle in Q. The minimality of T ensures

that φ(w) = (b d) for d 6∈ {a, c}. This case is shown in Figure 3.7. All other vertices

and edges of Q are not changed by µ(2)
v , so this completes the proof.

3.5.3 All presentation quivers are mutation-Dynkin modulo 2

Mutation modulo 2 does not, as stated, yield an equivalence relation on the space

of generalised presentation quivers of type An. This is because we have not de-
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v

u w

(a b)

(b c) (b d)
µv

v

u w2

reduce
mod 2

v

u w

(a b)

(b c) (a d)

v

u w

(a b)

(b c) (b d)
µ
(2)
v

v

u w

(a b)

(b c) (b d)

v

u w

(a b)

(b c) (b d)
µ
(2)
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v

u w

(a b)

(a c) (a d)

Figure 3.7: Mutation modulo 2 of an unoriented 3-cycle. The maps ϕ and µv(ϕ) are rep-
resented by labelling each vertex by its image in W (An).

fined an inverse to the mutation µ
(2)
v shown in the top row of Figure 3.7. It is

possible to reinterpret all edge weights in a quiver as living in Z2, and define mu-

tation with respect to this. Making this definition consistent, however, becomes

quite ad hoc and messy, even when just restricting to quivers associated to minimal

generating tuples ofW (An). We omit a detailed discussion of this as it is not clear

how it might generalise outside of type A. We can however prove the following.

THEOREM 3.41: Let (Q, φ) be a generalised presentation quiver of type A, then it is pos-

sible to perform a sequence of mutations modulo 2 to produce a generalised presentation

quiver (Q′, φ′) such that Q′ is mutation-Dynkin.

In order to prove this we need to consider more closely the local geometry of

weighted graphs associated to reflection generating tuples of W (An).

Definition 3.42. LetT be a (minimal) reflection generating tuple, VT the associated

weighted graph, and v a vertex of VT . Then the link of v, denoted lk(v), is the sub-

graph of VT induced by the set of vertices which neighbour v.

LEMMA 3.43: Let T be a minimal reflection generating tuple, and v a vertex of VT , then

lk(v) has at most two connected components, each of which is a complete graph
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Proof. Let φ be the map V → W (An) associated to T , and write φ(v) = (a b). If u is

a neighbour of v, then φ(u) = (a c) or (b c) for some c 6∈ {a, b}. If φ(u) = (a c) and

w is any other neighbour of v such that φ(w) = (a d) for some d, then u and w are

connected in lk(v). It follows that the connected component of lk(v) containing u

is a complete graph. Moreover, we can label each connected component either a or

b depending on which appears in the φ-images of the vertices of that component.

Consequently, there are at most two such components.

Proof of Theorem 3.41. The idea of the proof is to perform a sequence of mutations

modulo 2 so that the resulting quiver is tree-like. Then we can argue that this tree

must be a path graph, and hence An. First we show that all chordless cycles have

length 3. Removing unoriented cycles of length 3 is straightforward: it uses the

top row of Figure 3.7 and Lemma 3.43. Call the result Q′. In order to remove the

remaining oriented 3-cyclesQ′, we consider the graph of oriented 3-cycles inQ′. This

is a graph whose vertex set is the set of 3-cycles in Q′. We show that this graph

must be a forest. We give a procedure to prune this forest one leaf at a time until

all 3-cycles are removed.

Bounding the length of cycles First we claim thatQ contains no chordless cycles

of length greater than 3. Assume such a cycle does exist, and cyclically label its

vertices v0, v1, . . . , vk. Write φ(vi) = (ai, ai+1), where the indices are read modulo

k. Since the cycle is chordless, the ai’s are pairwise distinct. But then the subgroup

generated by φ(v0), . . . , φ(vk−1) contains φ(vk), contradicting the assumption that

φ(V ) = T is a minimal reflection generating tuple.

Removing unoriented 3-cycles Let u
v

w be a path of length 2 inQ, car-

rying some orientation. If this path is not part of a 3-cycle or is part of an oriented

3-cycle, then it follows from the definition that mutation modulo 2 at v does not

create any unoriented cycles. If it is part of an unoriented 3-cycle, then the muta-

tion is one of those shown in Figure 3.7, which does not increase the number of un-

oriented 3-cycles. By performing a sequence of mutations of the first type shown

in that Figure, therefore, we can inductively remove all unoriented 3-cycles.



WEYL GROUPS AND QUIVER MUTATIONS 109

Now assume that Q does not contain any unoriented 3-cycles. Fix a vertex v,

and consider its link. By Lemma 3.43, this link has at most two components, both

of which are complete graphs. If a component contains a triangle, thenQ contains

a complete graph with four vertices. It then follows from Figure 3.6 thatQ contains

an unoriented cycle, which is a contradiction. Therefore, each component of lk(v)

is a vertex or an edge. We define a sequence of mutations modulo 2 to remove the

oriented cycles. These mutations do not introduce any edges of weight 2, and so

are simply mutations.

The graph of 3-cycles Define a new graph whose vertices are the oriented 3-

cycles in Q, and two vertices are joined by an edge if the corresponding 3-cycles

share a vertex (by the Lemma two 3-cycles cannot share an edge). If this graph

itself contains a chordless k-cycle, then this corresponds to a k-cycle of connected

3-cycles in Q. Since Q contains no edge loops or double edges, k cannot be 1 or 2.

If k is 3, then Q contains two 3-cycles which share an edge, which is not possible.

Finally if k > 3, assume that k is minimal. Then Q contains a k-cycle, c, made up

of the vertices where adjacent 3-cycles meet. Since Q contains no chordless cycles

of length greater than 3, this k-cycle is short-cut by an edge which forms a 3-cycle

with two of the edges from c. This new 3-cycle short-cuts the k-cycle of 3-cycles,

contradicting the minimality of k. These cases are illustrated in Figure 3.8.

k = 1 k = 2 k = 3

· · ·

···

k > 3

Figure 3.8: Proof that a quiver of type A cannot contain a cycle of 3-cycles. The quiver is
shown in red, and overlaid in blue is the graph of 3-cycles.

This shows that this graph formed using the 3-cycles inQ is acyclic and hence a
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finite forest. Augment this graph by adding an edge between two vertices if there

is some path inQ connecting the corresponding 3-cycles, and none of the edges in

that path lies in a 3-cycle. We claim that this new graph is still a forest. Indeed, a

similar argument which ruled out k-cycles for k > 3 above works here. A k-cycle

in this new graph descends to an `-cycle inQ for some ` > k by taking the union of

the paths connecting adjacent 3-cycles, together with an edge from each 3-cycle.

This `-cycle must be short-cut by an edge which forms a 3-cycle with at least one

of the edges of one of the connecting paths, contradicting the definition of these

paths. This is illustrated in Figure 3.9.

· ·
·

···
Figure 3.9: Part of a cycle in the augmented graph of 3-cycles. Again, the quiver is shown
in red, and overlaid in blue is the graph of 3-cycles.

Pruning the forest Pick a vertex with valence 0, 1, or 2 in this forest, and we

show that the corresponding 3-cycle can be removed to decrease the total number

of 3-cycles. Indeed, this 3-cycle must have a vertex v which is not connected to any

other 3-cycles by a path not containing an edge from a 3-cycle. Thus, either v has

valence 2 or, following any path away from v, we eventually reach a vertex u of Q

with valence 1. In fact, by applying Lemma 3.43, if v has valence greater than 2,

it must have valence 3 and there is a unique path leading away from v. If v has

valence 2, then the mutation µv removes the 3-cycle without creating a new one,

see the first row in Figure 3.10.

Otherwise, let d ⩾ 1 be the length of the path connecting v to the valence 1

vertex u. The mutation at v replaces the 3-cycle with a new one which is closer

to u. Hence, the total number of 3-cycles remains constant, but d decreases. By

induction on d, we can decrease the number of 3-cycles by 1 after d+1 mutations,

see the second row of Figure 3.10. Repeating this for each oriented 3-cycle we are
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able to remove each one to leave a quiver Q′ which is a tree.

v
µv

v

· ·
·

u

d µv

v

· ·
·

u

v

· ·
·

u

· · ·

v

· ·
·

u

··
···
·

µu

v

· ·
·

u

··
···
·

Figure 3.10: Removing an oriented cycle from Q.

The underlying tree must be a path Since Q′ contains no cycles, every compo-

nent of the link of a vertex is a point. By applying Lemma 3.43, we can conclude

that every vertex in Q′ has valence 1 or 2 (assuming n > 1). Therefore, the under-

lying graph of Q′ is a path of length n—in other words, the underlying weighted

graph of Q′ is An, and Q′ is mutation-Dynkin.

We can immediately conclude from this Proposition, Proposition 3.16, and

Corollary 3.37 the following result.

COROLLARY 3.44: Any generalised presentation quiver of typeA can be transformed into

a standard presentation quiver by a sequence of mutations modulo 2, and hence every

minimal reflection generating tuple of An is reflection equivalent to any other.

We have shown that, while the answer to Question 3.14 is no, we can generalise

the notion of mutation somewhat to make it yes in the type A case. Moreover, the

answer to Question 3.15 remains yes in type A in this generalised setting.

It is not immediately clear whether this generalisation can be extended to other

types, but that would be an interesting question to try to answer. Another question

which should be considered is whether this generalisation can be reinterpreted in

the original context of cluster algebras.



Chapter 4

Reflection equivalence for arbitrary

Coxeter systems

AS WE REMARKED IN SECTION 2.1, there are two types of question one can ask about

Nielsen equivalence in Coxeter groups. In this Chapter we discuss the second:

given a Coxeter system (W,S) with reflections R, classify all generating tuples

for W with entries in R up to reflection equivalence. Our main tool is the Davis

complex associated to a Coxeter system (W,S). This is a CAT(0) CW complex on

whichW acts discretely by isometries such that the elements ofS act by the natural

generalisation of the notion of reflections in this context.

The fixed sets of the reflections in W are hyperplanes, so to any tuple of reflec-

tions we can associate a hyperplane arrangement. We use the geometry of this

hyperplane arrangement to give a new proof of a criterion for when a tuple of re-

flections form a Coxeter generating tuple for (a reflection subgroup of) W . This

gives us a terminating condition for an algorithm which takes in a tuple of re-

flections and outputs a Coxeter system for the Coxeter (sub)group they generate.

This gives an effective method of testing whether a tuple of reflections in (W,S)

generate W , and if not, what the index of the subgroup they generate is.

Modifying this algorithm slightly allows us to study reflection equivalence.

Given a tuple of reflections this new algorithm returns another tuple of reflections

which is reflection equivalent to the original one, but which is in some sense geo-

metrically and algebraically simplest (Theorem 4.44). This gives, at least in prin-

112
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ciple, a method to classify all generating tuples of reflections for a given Coxeter

system. It also proves that for many Coxeter systems (including all Weyl groups

and RACGs) there is only one reflection equivalence class of generating tuples of

reflections (Corollary 4.45). Moreover, it allows us to prove that in any Coxeter

system, after performing a single stabilisation, every generating tuple of reflec-

tions is reflection equivalent to some stabilisation of S, see Theorem 4.47.

4.1 The basic construction and the Davis complex

First we review the so-called basic construction and its application to defining the

Davis complex of a Coxeter system. We follow the exposition in Chapters 5 and

7 of [32] in part. The purpose of the Davis complex is to generalise the natural

geometric action of a geometric reflection group on a space of constant curvature to

arbitrary Coxeter systems. We make heavy use of (abstract) simplicial complexes,

so we summarise the relevant definitions and notation in Section 4.A at the end of

this Chapter. Note Assumption 4.62: we do not distinguish between an abstract

simplicial complex and the corresponding geometric simplicial complex.

4.1.1 Motivation: geometric reflection groups

A Coxeter group W which acts discretely, co-compactly, and by isometries on a

space of constant curvature Xn such that a tuple of Coxeter generators S act by

reflections is called a geometric reflection group. The reflection hyperplanes from S

bound an acute-angled polytope which is a strict fundamental domain.

Definition 4.1. Let a group G act on a topological space X by homeomorphisms.

A subset F ⊂ X is called a fundamental domain for G if

• It is open and connected;

• Every G-orbit intersects F , the closure of F , in at least one point; and

• Whenever aG-orbit intersectsF at a point inF , then this is the unique point

of intersection with F .



114 THE BASIC CONSTRUCTION AND THE DAVIS COMPLEX

A fundamental domain is strict if the third point holds whenever a G-orbit inter-

sects the boundary ∂F as well.

We now explore an extended example of a geometric reflection group which

exhibits all of the essential features the Davis complex is designed to capture.

Example 4.2. Consider the example of the Coxeter system (W,S) with presenta-

tion diagram:

s1s2

s3

3

3 3

The groupW acts on E2, the Euclidean plane, with strict fundamental domain

an equilateral triangle, where the generators s1, s2, and s3 act by reflections in the

sides of this triangle. We call this fundamental domain the fundamental chamber

C.

s1s2

s3

Figure 4.1: The action of a geometric reflection group on E2. The dashed lines repre-
sent the reflection lines of the reflections, the solid lines represent the reflection lines for
the Coxeter generators, and the blue triangle represents the strict fundamental domain
bounded by these lines.

The fundamental chamber C can be given a simplicial structure by identifying

it with a 2-simplex. Since the W -translates of the fundamental domain tile E2, we

can equivariantly extend this to a simplicial structure on the whole plane.

Since the fundamental domain is strict, the stabiliser of each simplex fixes that

simplex point-wise. Labelling each simplex by the special subgroup which sta-

bilises it, we get Figure 4.2. If we include the empty simplex which is labelled by
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W{s1,s2,s3} = WS = W then the labelling corresponds to a bijection between the

simplices in c and the power set of S. Moreover, this bijection has the following

additional property: given two simplices σ and τ with labels λ(σ) and λ(τ), σ ⊆ τ

if and only if λ(σ) ⊇ λ(τ).

W{s1,s2}

W{s2,s3} W{s3,s1}

W{s2}

W{s3}

W{s1}

W∅

Figure 4.2: The fundamental chamber with simplices labelled by the Coxeter generators
which fix them.

Just as we extended the simplicial structure of C to the whole plane, we can

extend the labelling to the whole simplicial structure. Every simplex is aW trans-

late of some simplex in C. Let wσ be such a simplex, where w ∈ W and σ ⊂ C.

Then the stabiliser of wσ is the parabolic subgroup wλ(σ)w−1, and we can label

wσ by the coset λ(wσ) := wλ(σ) ∈ λ(σ)\W . This labelling does not depend on

the choice of representation wσ for the simplex and still has the property that, for

any two simplices σ and τ in E2 with labels λ(σ) and λ(τ), σ ⊆ τ if and only if

λ(σ) ⊇ λ(τ).

We have two posets (see Definition 4.54): the poset of simplices in the simpli-

cial structure on E2 with simplices ordered by inclusion,

(simplices inE2,⊆);

and the poset of cosets of special subgroups of (W,S) again ordered by inclusion,

(left cosets ofWT forT ⊆ S,⊆).

The labelling λ can be viewed as a poset isomorphism from the first poset to the

second with the opposite order relation to inclusion, see Definition 4.56.

One natural way to attempt to generalise this to an arbitrary Coxeter system

(W,S) is to start with the set of all left cosets of special subgroups of W , turn this
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into a poset by ordering cosets with the opposite ordering to that given by inclu-

sion (see Definition 4.56), and then replace Xn by the simplicial complex which

has this poset as its poset of simplices. The resulting simplicial complex has a

natural W -action defined by w · uWT = (wu)WT . Furthermore, the subcomplex

whose simplices are special subgroups forms a strict fundamental domain for the

action. This simplicial complex is called the Coxeter complex of (W,S) and plays

an important role in the theory of Tits buildings, see [16].

For our purpose, the Coxeter complex is in some sense too big—including cosets

of all special subgroups causes problems with the infinite special subgroups. In-

stead, the Davis complex essentially deletes the simplices which are cosets of infi-

nite special subgroups. We shall give two definitions, one based on the so-called

basic construction, and one based on cosets. The basic construction starts with a

simplicial complexK which ends up being a strict fundamental domain, and ‘un-

folds’ or ‘develops’ a complex with aW -action according to a mirror structure onK,

and a family of subgroups (the finite special subgroups). The coset construction

models the Coxeter complex definition above with the infinite special subgroups

excluded.

4.1.2 The basic construction

Definition 4.3. Let K be a simplicial complex, and S a finite set. A mirror struc-

ture onK is a collection of subcomplexes called mirrors {Ks | s ∈ S} ofK indexed

by S. For a point x ∈ K, write S(x) := {s ∈ S | x ∈ Ks}.

A family of groups over S consists of a discrete group G and a collection of

subgroups {Gs}s∈S , again indexed by S. For any T ⊂ S, writeGT for the subgroup

generated by {Gt | t ∈ T}.

In particular, if T ⊂ T ′ then GT ⩽ GT ′ . The basic construction takes as input a

mirrored space and family of groups over a set S and outputs a simplicial complex

on which G acts with strict fundamental domain K.

Definition 4.4. Let G be a group with the discrete topology and let S be a finite

set. Let K be a simplicial complex with a mirror structure over S, and {Gs}s∈S a
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family of groups for G. Consider the product G ×K with the product topology.

Let ∼ denote the equivalence relation given by

(g, x) ∼ (g′, x′) if and only if x = x′, and g′ ∈ gGS(x).

Then define the quotient space

U(G,K) := (G×K)/ ∼ .

Points in U(G,K) are denoted by [g, x]U(G,K); we drop the subscript if the space

U(G,K) is clear from context. The group G acts on U(G,K) by h[g, x] = [hg, x],

and there is a natural inclusion i : K → U(G,K) : x 7→ [1, x]. Identifying K with

its image, its G-translates are called chambers, and K itself is the fundamental

chamber.

Before using the basic construction to define the Davis complex, we illustrate

it in a simpler setting by using it to reconstruct the simplicial structure on E2 we

found in Example 4.2. Note that the complex we construct in this example is not

the Davis complex.

Example 4.5. Let (W,S) be the Coxeter system in Example 4.2, and define the

family of groups over S to be Wsi = W{si}, ie the special subgroup generated by

si. Let K be a 2-simplex, and we give it a mirror structure over S by letting the

three edges be Ksi for i = 1, 2, 3.

Ks2

Ks3

Ks1

K

Figure 4.3: The fundamental chamber with its mirror structure.

Now we form the product W × K which consists of an infinite collection of

disjoint copies of K. Finitely many of these have been arranged suggestively in

Figure 4.4 with the mirror structure highlighted.

Consider one of the copies of K in this product: (s1s2, K). Taking a point x

in the interior of Ks1 , S(x) = {s1} so GS(x) = {e, s1}. We can ask which points



118 THE BASIC CONSTRUCTION AND THE DAVIS COMPLEX

(s3s2,K) (s3s1,K)

(s2s3,K) (e,K) (s1s3,K)

(s2s1,K) (s1s2,K)

(s2s3s2,K) (s3,K) (s1s3s1,K)

(s2,K) (s1,K)

(s1s2s1,K)

(s3s2s1,K) (s3s1s2,K)

(s1s3s2,K)

(s1s2s3,K)(s2s1s3,K)

(s2s3s1,K)

Figure 4.4: A finite portion of the product W ×K.

(s1s2, x) is identified with. They are points (w, x) such that w ∈ s1s2GS(x) which

equals {s1s2, s1s2s1}. Hence (s1s2, x) is only identified with itself and (s1s2s1, x).

Therefore, (s1s2, K) is glued to (s1s2s1, K) along their respective copies of Ks1

(shown in green in the Figure).

Now take the point y ∈ Ks1 ∩Ks2 . Then S(y) = {s1, s2} so

GS(y) = {e, s1, s1s2, s1s2s1, s2s1, s2} = s1s2GS(y).

The point (s1s2, y) ∈ (s1s2, K) is identified with each of the points (e, y), (s1, y),

(s1s2, y), (s1s2s1, y), (s2s1, y), and (s2, y).

In this way we can form the quotient U(W,K) by gluing together edges and

vertices to recover the simplicial structure on E2, see Figure 4.5.

4.1.3 First definition of Σ: the basic construction

We can now use the basic construction to define the Davis complex of a Coxeter

system (W,S). First we must define the complex K which we do via the nerve of

(W,S). This is done using the set of spherical subsets of S
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[s3s2,K] [s3s1,K]

[s2s3,K] [e,K] [s1s3,K]

[s2s1,K] [s1s2,K]

[s2s3s2,K] [s3,K] [s1s3s1,K]

[s2,K] [s1,K]

[s1s2s1,K]

[s3s2s1,K] [s3s1s2,K]

[s1s3s2,K]

[s1s2s3,K][s2s1s3,K]

[s2s3s1,K]

Figure 4.5: A finite portion of the quotient space U(W,K), in particular the chambers
corresponding to elements of W with length at most 3.

Definition 4.6. A subset T ⊂ S is spherical if the special subgroup WT is finite

(see Definition 1.3). Denote by S = S(W,S) the set of spherical subsets of S, which

is a poset ordered by inclusion.

Since any subset of a spherical subset is again a spherical subset, the poset S⊃∅

of non-empty spherical subsets of S is an abstract simplicial complex, see Defini-

tion 4.60.

Definition 4.7. The nerve of a Coxeter (W,S) is the complex L = L(W,S) whose

poset of simplices is S⊃∅. Define the fundamental chamber K = K(W,S) for

(W,S) to be the geometric realisation of the poset S , see Definition 4.63.

The nerve can be thought of as a combinatorial encoding of how the non-trivial

spherical subgroups of (W,S) intersect with one another. It is possible to con-

struct K more concretely from the presentation diagram Γ (recall Definition 1.2)

via the nerve L. Starting with Γ, attach a k-simplex wherever the 1-skeleton of a

k-simplex, ie a complete (k+1)-subgraph, appears as a subgraph of Γ and the spe-

cial subgroup corresponding to this complete graph is spherical. This complex is

isomorphic to L. ThenK is formed by taking the barycentric subdivision of L and

then taking the cone over this complex, see Section 4.A.4, K = Cone(Bs(L)).
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We can illustrate this with our running example.

Example 4.8. The presentation diagram Γ is shown at the start of Example 4.2. We

will compute K(W,S) both using the definition, and via L. The poset S is shown

in Figure 4.6. Its geometric realisation is shown on the right of the Figure.

{s1, s2}

{s2, s3} {s3, s1}

{s2}

{s3}

{s1}
∅

⊂
⊂ ⊂ ⊂

⊂

⊂⊂

⊂

⊂

⊂

⊂

⊂

K

Figure 4.6: The poset S and the corresponding complex K.

Alternatively, starting withΓ, it contains the 1-skeleton of a 2-simplex, however

the corresponding special subgroup is the whole ofW which is infinite. Therefore

in this case L = Γ. To form K we take the cone over the barycentric subdivision

of L. This yields the same complex as above.

The relation ⊆ on the simplices of L leads to an ordering of the vertices of the

barycentric subdivision (see Remark 4.66) which we use to give K a mirror struc-

ture over S. In particular, letKs be union of the closed simplices in the barycentric

subdivision of L (thought of as a subcomplex of K) which have {s} as their min-

imum vertex. We also choose a family of groups over S by setting G = W and

Gs = W{s}.

Definition 4.9. The Davis complex of the Coxeter system (W,S) is

Σ = Σ(W,S) := U(W,K(W,S)).

Example 4.10. Finally, let us construct the Davis complex for the running example.

The mirror structure on K defines Ksi to be the union of simplices of K—which

are chains in the poset S—which have {si} as their minimum vertex. This gives

the mirror structure in Figure 4.7.

Compare this with Figure 4.3. It is straightforward to see that applying the

basic construction will give the barycentric subdivision of Figure 4.5 in this case.
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Ks2

Ks3

Ks1

Figure 4.7: The mirror structure on K.

In general there is not such a simple relationship between the Coxeter complex

of (W,S) and the Davis complex.

Example 4.11. As a simple example, consider the Coxeter system (W,S)with Cox-

eter presentation

〈 s1, s2, s3 | s21, s22, s23 〉.

This group acts on the hyperbolic plane, and its Coxeter complex can be visu-

alised as the tiling of the hyperbolic plane by ideal triangles. At the ideal vertices

of these triangles, the Coxeter complex fails to be locally finite owing to the fact

that the special subgroups generated by (si, sj) for i 6= j are infinite (in partic-

ular, infinite dihedral groups). The construction of the Davis complex removes

the ideal vertices and leaves behind a graph: the barycentric subdivision of the

regular trivalent tree, see Figure 4.8.

4.1.4 Second definition of Σ: cosets

We already defined the fundamental chamber as the geometric realisation of the

poset S , in fact we can define the Davis complex in this way as well.

Definition 4.12. Denote by WS the set of leftcosets of spherical subgroups of

(W,S). In other words

WS :=
⋃
T∈S

W/WT .

This again is a poset ordered by inclusion. We define the Davis complex of (W,S),

Σ(W,S), to be the geometric realisation of this poset.
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Figure 4.8: A representation of a finite part of the Coxeter complex of (W,S) in the hy-
perbolic plane. The corresponding finite part of the Davis complex is overlaid in purple,
in particular it shows all chambers corresponding to elements of W of length at most 3.

There is an injective map S ↪→ WS : T 7→ WT which preserves the order rela-

tion. This induces an injective map K(W,S) into the geometric realisation of WS

whose image is again called the fundamental chamber. The proof that these two def-

initions are equivalent can be found as Theorem 7.2.4 in [32], see also Remark 4.32.

The action ofW on this formulation of the Davis complex is straightforward to

define. W acts onWS by left multiplication: w ·uWT = (wu)WT , and this induces

an action in the geometric realisation.

Example 4.13. We give one more example, this time with a Coxeter system which

does not act nicely on a space of constant curvature. Consider the Coxeter system

with presentation diagram as shown in Figure 4.9. The special subgroup gener-

ated by (s1, s2, s3) is the symmetry group of the 3-cube, while the special subgroup

generated by (s3, s4, s5) is the group we considered in the running example above.

Overall, the group W is the amalgamated product of these two groups over 〈s3〉.

In the Figure we have also shown the fundamental chamber K with its mir-
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rors. Visualising Σ(W,S) is harder, but it can be viewed as a tree of spaces, where

the underlying tree is 2-coloured, say black and white. Each black vertex corre-

sponds to a copy of E2 tiled by equilateral triangles and has infinite valence. Each

white vertex corresponds to a 3-cube and has valence 48. Each edge in the tree

corresponds to where a cube and a plane intersect in an edge.

s1

s2

s3

s4

s5

3

4

3

3
3

Γ K mirrors
Ks1

Ks2

Ks3

Ks4

Ks5

Figure 4.9: A presentation diagram Γ and the corresponding fundamental chamber K.
On the right, the mirror structure is overlaid on K.

4.1.5 Basic properties of the Davis complex

We summarise some of the useful properties of Σ.

THEOREM 4.14 (Lemma 5.3.3, Proposition 7.3.4, and Theorem 12.3.3 in [32]): For

any Coxeter system, Σ is contractible, and each element of r ∈ R(W,S) fixes a subcomplex

Σr which separates Σ into two components. Moreover Σ admits a ‘dual’ CW structure

(the cells of which are called Coxeter polytopes) such that if each cell is given its natural

Euclidean metric

1. The piece-wise Euclidean metric on Σ is CAT(0)

2. The action of W on Σ is by isometries

3. The 1-skeleton of this CW structure is the Cayley graph of (W,S) (see Defini-

tion 4.67)

In addition Σ satisfies a certain universal property with respect to spaces on

which W acts, however we postpone the statement, where we give it in slightly

greater generality in Theorem 4.31.
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Definition 4.15. The complex Σr, for r ∈ R, is called the hyperplane associated to

r. Similar to Theorem 1.8, write Σ+
r for the component of Σ − Σr which contains

the interior of K and write Σ−
r for the other component.

A useful result we will use throughout this Chapter is the following.

LEMMA 4.16: For two reflections r, r′, Σr ∩ Σr′ 6= ∅ if and only if rr′ has finite order.

Proof. In one direction, if they meet at some point, this point is fixed by rr′. But by

the construction of Σ, rr′ must be conjugate into some spherical subgroup which

is finite.

Conversely, assume that Σr ∩ Σr′ = ∅. There are exactly three connected com-

ponents of Σ − (Σr ∪ Σr′), only one of which meets both hyperplanes—after a

suitable conjugation we can assume that this component is Σ+
r ∩Σ+

r′ . Then (using

the notation for conjugation introduced in Notation 2.22)

rr′Σr′ = Σrr′r′ = Σrr′ ⊂ Σ−
r , and

rr′Σr = Σrr′r = Σ(rr′)r ⊂ Σ−
rr′ ⊂ Σ−

r .

Notice also that (rr′)rrr′ = rr′. Setting r1 = (rr′)r and r′1 = rr′ we can repeat the

argument to produce r2 = (r1r′1)r1 and r′2 = r1r′1 such that r2r′2 = rr′ and

Σ+
r′ ⊃ Σ−

r ⊃ Σ−
r′1
⊃ Σ−

r1
⊃ Σ−

r′2
⊃ Σ−

r2
.

This is illustrated in Figure 4.10. Inductively we can produce an infinite sequence

of reflections {ri, r′i}∞i=1 which are all distinct since the half-spaces bounded by

their fixed sets are properly nested. Moreover, ri = (rr′)ir, implying the orbit of the

hyperplane Σr under 〈rr′〉 is infinite. It follows that rr′ has infinite order.

PROPOSITION 4.17: Let (W,S) be a Coxeter system with length function `. Then for any

w ∈ W

`(w) = #{r ∈ R(W,S) | wK ⊂ Σ−
r }.

This result with Σ replaced by the Coxeter complex (which we introduced

briefly in Section 4.1.1) is proved as Theorem II.1 in [16]. The same proof works
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...

...

...

...

...

...

...

...

...

...

...

...Σr′ Σr′1
Σr′2Σr Σr1 Σr2

Σ+
r′

Σ−
r′1

Σ−
r′2

Σ−
r Σ−

r1
Σ−
r2 · · ·

Figure 4.10: The hyperplanes produced by translation Σr and Σr′ by powers of rr′, to-
gether with the nested structure of their half-spaces.

mutatis mutandis in the Davis complex. Alternatively, the Lemma can be reduced

directly from Theorem II.1 by viewing the Σ as a subcomplex of the cone on the

barycentric subdivision of the Coxeter complex—see the discussion at the end of

Section D.2 in [32].

Remark 4.18 (Complexes of groups). Although we will not make use of the follow-

ing in this thesis, we will remark that in some settings, including in the construc-

tion of the Davis complex, the basic construction can be thought of in terms of

covering maps of complex of groups (see [56]). For the interested reader we sketch

this now, for a related discussion see Chapter II.12 in [14].

Let K be a simplicial complex, S a finite set, and G a group. Give K a mirror

structure over S and choose a family of groups over S. From this data we can

define a complex of groups by associating to each simplex the subgroup GS(x) of

G, where x lies in the interior of the simplex unless the simplex is a vertex, in

which case x is that vertex. The edge maps are simply inclusion maps.

The group G acts on U(G,K) with strict fundamental domain K. Thus the

quotient U(G,K)/G can be identified with K. We can label the simplices of K

by the stabilisers of the their images in U(G,K) under K ↪→ U(G,K) : x 7→ [1, x].

This labelling recovers the complex of groups structure defined above, so K is

developable.

The quotient map U(G,K) → K is a complex of groups covering map. We
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might ask when U(G,K) is the universal cover of K.

THEOREM 4.19 (Theorem 9.1.3 in [32]): U(G,K) is simply connected if and only if

1. K is simply connected

2. For each s ∈ S, the mirror Ks is non-empty and path connected

3. For each {s, t} ⊂ S such that Gs,t is finite, Ks ∩Kt 6= ∅

One can check that these conditions hold for the definition of Σ(W,S) in terms

of the basic construction, U(W,K(W,S)), and hence U(W,K(W,S)) is the univer-

sal cover of K(W,S), thought of as a complex of groups.

4.2 When is a reflection system a Coxeter system?

Fix a Coxeter system (W,S) and write R for the set of reflections in (W,S).

Definition 4.20. Let X ⊂ R a finite tuple of reflections. Write WX = 〈X〉 for

the subgroup of W generated by X . Note that a priori it is not clear that WX is a

Coxeter group. We call the pair (WX , X) a reflection system for the subgroupWX

of W , which is called a reflection subgroup.

In [34], Vinay Deodhar shows that if (WX , X) is a reflection system, WX is

a Coxeter group (although in general it is not a special subgroup of W ), and it

admits a canonical Coxeter system with respect to (W,S). The system is canonical

in the sense that it it is minimal with respect to a certain pre-order relation on

R. We will not give this definition since it plays no further role in our work. For

our purposes we take the criterion stated in Theorem 4.26 as the definition of this

canonical Coxeter system.

Such a Coxeter system is, a fortiori, a reflection system and in [42], Matthew

Dyer gave a geometric criterion for when a reflection system is this canonical Cox-

eter system. Before we state this criterion we must first define a notion of angles

between reflections in a Coxeter group.



REFLECTION EQUIVALENCE IN COXETER SYSTEMS 127

4.2.1 Angles in Coxeter systems

To state this Recall the symmetric bilinear form B defined in Definition 1.7.

Definition 4.21. Let r be a reflection in (W,S). A reduced palindromic expression

for r is an expression ws which equals r such that w a reduced word; s ∈ S; and

`(ws) = `(w) + 1.

Fix a palindromic reduced expression r = ws for a reflection r and set er := wes

where es is the basis vector associated to s ∈ S (in this thesis we do not discuss

root systems at all, however the interested reader will note that the condition on

w and s guarantees that er is what is called a positive root).

LEMMA 4.22 ([41] Lemma 3.11): Let r, r′ ∈ R be reflections. Then

B(er, er′) ∈ (−∞,−1] ∪ {cos(kπ/m) | k,m ∈ N,m 6= 0} ∪ [1,∞)

and the order of rr′ is finite if and only if

B(er, er′) = − cos
(
kπ

m

)
where k < m ∈ Z+, and gcd(k,m) = 1; in this case the order is m.

Definition 4.23. Let r, r′ ∈ R be reflections, define the angle between r and r′,

written ∠rr′, to be 0 if rr′ has infinite order, and otherwise to be

∠rr′ = arccos(−B(er, er′)).

Following [83], we call the pair (r, r′) sharp-angled with respect to (W,S) if the

angle ∠rr′ = 0 or π/m for some m ⩾ 2. More generally a tuple of reflections X

is sharp-angled with respect to (W,S) if for any r 6= r′ ∈ X , the pair (r, r′) is

sharp-angled.

Remark 4.24 (Sharpness versus non-obtuseness). Being sharp-angled implies the

angles are non-obtuse but is a strictly stronger condition since we do not allow

angles such as 2π/5.

The vector er can be thought of as the normal to the hyperplane fixed by r

which points towards the fundamental chamber (in the sense of Theorem 1.8).
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Hr

Hr′er

er′

∠rr′

Figure 4.11: B measures the angle between hyperplanes.

Then B measures the angle between the normal vectors er and er′ , and ∠rr′ mea-

sures the angle between the hyperplanes, as measured in the sector of their com-

plement containing the fundamental chamber.

Example 4.25. In any Coxeter system, computing the angle between two reflec-

tions r and r′ such that rr′ has finite order reduces to a computation in a special

dihedral subgroup. This is because the finite subgroup 〈r, r′〉 is conjugate intoWT

for some T = {s, s′} ⊂ S.

One way to see this is to apply the Bruhat-Tits Fixed Point Theorem (see for

example Theorem I.2.11 in [32]) to 〈r, r′〉 acting on Σ(W,S) to find a fixed point.

There is some w ∈ W which sends this fixed point to the fundamental chamber

K. Therefore, we can conclude that 〈r, r′〉 is conjugate by w into the stabiliser of

a point in K, but by the construction of Σ(W,S) this must be a spherical special

subgroup.

If we choose w ∈ W to be of minimal length such that 〈r, r′〉 ⩽ wWT (ie the

parabolic subgroup obtained by conjugating WT by w), then there are reflections

t, t′ ∈ WT such that r = wt and r′ = wt′. Using the minimality of w and the fact

that B is W -invariant, we get

− cos(∠rr′) = B(er, er′) = B(wet, wet′) = B(et, e
′
t) = − cos(∠tt′).

Now we want to compute ∠tt′. Any element of WT can be expressed as a re-

duced alternating word of the form ss′s · · · or s′ss′ · · · of length at most mss′ . We

write ad(s, s′) = ss′s · · · for the alternating word of length d. For 0 < d < mss′ , all

words ad(s, s′) or ad(s′, s) represent distinct elements of WT ; a0(s, s′) = a0(s
′, s) is

the identity; and amss′
(s, s′) = amss′

(s′, s) is the unique element of longest length.

An element of WT is a reflection if and only if any (or equivalently every) alter-
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nating word representing it has odd length, and hence is palindromic.

Now suppose t 6= t′ and `(t) ⩽ `(t′). Up to relabelling s and s′ we can assume

t = aℓ(t)(s, s
′), and express t′ by a (possibly non-reduced) word ad(s′, s) for d = `(t′)

or 2mss′ − `(t′). Then it is straightforward to check that

∠tt′ = `(t) + d

2

π

mss′
,

see Figure 4.12.

Ht

Ht′

Hs

Hs′

ℓ(t)
2

π
mss′

d
2

π
mss′

Figure 4.12: Measuring the angle between hyperplanes.

THEOREM 4.26 (Equivalent to Theorem 4.4 in [42]): Let X ⊂ R be a tuple of reflec-

tions, then (WX , X) is the canonical Coxeter system associated to WX with respect to

(W,S) if and only if all elements of X are distinct and X is sharp-angled.

Remark 4.27 (Canonicity). It follows from Proposition 3.5 and equation 3.10 in [42]

that the canonical Coxeter system for a reflection system (WX , X) is the unique re-

flection system (W,X ′) which minimises
∑

r∈X′ `S(r), where `S is the length func-

tion on the host Coxeter system (W,S).

4.2.2 Geometric criterion on the Davis complex

We can reinterpret this Theorem in the context of the Davis complex of (W,S), Σ.

Let X ⊂ R be a tuple of reflections, and letHX := {Σr | r ∈ X} be the hyperplane

arrangement in Σ associated to X . If two of these hyperplanes intersect, then

there is a point x ∈ Σr ∩ Σr′ with an open neighbourhood contained in a Coxeter
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polytope as mentioned in Theorem 4.14. The dihedral angle between Σr and Σr′

at x, as measured with respect to the Euclidean metric induced by the Euclidean

metric on the Coxeter polytope, does not depend on the choice of x. Moreover if

the angle as measured in Σ+
r ∩ Σ+

r′ , it is ∠rr′.

Definition 4.28. A reflection r′ ∈ X an outlier if for any reduced palindromic

expression r′ = ws there is some r ∈ X such that `(rw) < `(w).

DefineKX to be the closed subcomplex ofΣwhich is the intersection
⋂
r∈X Σ+

r .

Note that K ⊂ KX , so this complex is non-empty. If a tuple of reflections X does

not contain any outliers, this implies thatKX∩Σr is non-empty for all r ∈ X . More

generally an outlier might meetKX , but that intersection locally has codimension

greater than 1. As an example, in Figure 4.12, if X = {s, s′, t} then t is an outlier.

We call KX sharp-angled if X is.

Definition 4.29. The tautological mirror structure on KX over X is given by

declaringKX
r = KX∩Σr. Define the tautological family of groups overX starting

with G = WX and setting Gr = 〈r〉 ∼= Z2.

Given these definitions we can now apply the basic construction, yielding a

space U(WX , K
X) on which WX acts. Notice that if X = S, then WX = W ,

KX = K, and the previous paragraph merely recovers the Davis complex Σ.

For r, r′ ∈ X , letmrr′ be the order of rr′. Write (WX , SX) for the Coxeter system

with Coxeter presentation

〈sr such that r ∈ X | s2r, (srsr′)mrr′ for allr, r′ ∈ X〉,

where SX = (sr)r∈X is an abstract tuple of generators. Define the surjection

φ : WX → WX by sending the generators sr 7→ r for each r ∈ X .

Definition 4.30. Give KX a second mirror structure, this time over the set SX , by

declaring KX
sr = KX ∩ Σr, and define a family of groups over SX with G = WX ,

and Gsr = 〈sr〉.
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With this second mirror structure and family of groups we can also construct

the space U(WX , K
X). In this slightly more general setting it is useful to state a

universal property for U(G,KX).

THEOREM 4.31 ([109] Proposition 1): Let G be either WX or WX , and suppose it acts

on a space Y , and for each r ∈ X write Yr for the fixed set of r or sr respectively. Suppose

i : KX → Y is a map such that i(KX
r ) ⊂ Yr or i(KX

sr ) ⊂ Yr respectively for all r ∈ X .

Then there is a unique extension of i, ı̃ : U(G,KX) → Y : [w, x] 7→ wi(x) which is

G-equivariant.

Remark 4.32 (Equivalence of the definitions of Σ). Take X = S, G = W , and Y the

geometric realisation of WS (see Definition 4.12). Then we can apply the univer-

sal property to the inclusion ofK into the geometric realisation ofWS induced by

S ↪→ WS . Together with some simple arguments to show that the the extension

is a homeomorphism, this proves that the two definitions of Σ(W,S) given previ-

ously are equivalent, in the sense that there is a W -equivariant homeomorphism

between U(W,K(W,S)) and the geometric realisation of WS , see Theorem 7.2.4

in [32].

The simplicial structure onK induces a simplicial structure onKX and on the

spaces obtained by the basic construction as above. The extension ı̃ is a simplicial

map which is a bijection when restricted to the interior of any translate ofKX . We

use the following observation in the proof of the Theorem below.

LEMMA 4.33: Let G be WX or WX , and let U(G,KX) be the space constructed above.

Then the map ı̃G : U(G,KX)→ Σ, extending the inclusion of KX into Σ, is surjective.

Proof. First consider the case G = WX . For any v ∈ WX and x ∈ KX write [v, x]U

for the corresponding point in U(WX , K
X) Similarly, for any w ∈ W and y ∈ K

write [w, y]Σ for the corresponding point in Σ. Let A := {w ∈ W | wK ⊂ KX}, so

that any x ∈ KX can be written [w, y]Σ for some w ∈ A and y ∈ K. IdentifyingKX

with its image in Σ, ı̃WX
maps

[v, [w, y]Σ]U 7→ [vw, y]Σ
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so ı̃WX
is surjective if and only if {vw | v ∈ WX , w ∈ A} = W . This is the case if

and only if and only if A contains a representative of every right coset of WX in

W .

Assume thatA does not contain a representative of the cosetWXw and assume

`(w) ⩽ `(u) for all u ∈ WXw. By definition, in Σ the translate wK 6⊂ KX , so there

is some hyperplane Σr for r ∈ X which separatesK from wK. Then `(rw) < `(w),

but r ∈ WX , so rw ∈ WXw contradicting the choice of w. Thus A contains a right

transversal (ie a set of unique right coset representatives forWX in W ), and ı̃WX
is

surjective.

Now consider the case G = WX . The surjective map φ : WX → WX induces

a map ̃ : U(WX , K
X)→ U(WX , K

X) : [u, y]U(WX ,KX) 7→ [φ(u), y]U(WX ,KX) which is

in turn surjective. Hence the composition ı̃WX
◦ ̃ : U(WX , K

X)→ Σ is continuous

WX-equivariant map which restricts to the identity onKX , and so by the unique-

ness part of the universal property is the map ı̃WX
. Therefore ı̃WX

is surjective, as

required.

We can now state part of then Davis complex version of Theorem 4.26. For

completeness, we give a proof which does not depend on the results in [34] or

[42].

THEOREM 4.34: Let X ⊂ R be a finite tuple of reflections which does not contain any

outliers, and consider the corresponding reflection system (WX , X). Let i : KX ↪→ Σ

be the inclusion map. The group WX acts on Σ via the surjection φ onto WX ⩽ W , so

let ı̃WX
: U(WX , K

X)→ Σ be the WX-equivariant extension coming from the universal

property. Then ı̃WX
is a homeomorphism if and only if KX is sharp-angled. In this case

1. the image i(KX) is a strict fundamental domain for WX acting on Σ (see Defini-

tion 4.1),

2. the map φ is an isomorphism, and

3. the pair (WX , X) is a Coxeter system.

4. X is the unique reflection generating tuple which minimises
∑

r∈X `(S)(r).
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Remark 4.35 (Geometric reflection groups case). This can be thought of as a gen-

eralisation of Theorem 6.4.3 in [32]. That Theorem applies to the special case of

geometric reflection groups (see Section 4.1.1). It replaces Σ with a space of con-

stant curvature Xn, and KX with a simple convex polytope P . Then assuming

that all the dihedral angles in P are sharp, ie of the form π/m it states that the

group W generated by the reflections in the co-dimension 1 faces of P is a Cox-

eter group and the tiling of Xn by W -translates of P is homeomorphic to U(W,P )

where P has the tautological mirror structure and family of groups over the set of

co-dimension 1 faces of P .

The proof of Theorem 6.4.3 in [32] is quite different from the proof of our The-

orem below, and does not generalise to our setting. Nevertheless, recall the dual

CW structure on Σ in which the cells are Coxeter polytopes (Theorem 4.14). We

can apply Theorem 6.4.3 in the interior of these Coxeter polytopes which is a key

step in our proof to show that ı̃WX
is a local homeomorphism.

Proof. Assume that ı̃WX
is a homeomorphism. First we prove the last four claims.

1. The first follows immediately from the definition of U(WX , K
X).

2. By the first claim, there is a bijection between the elements of WX and the

translates ofKX inU(WX , K
X), and so by hypothesis there is a bijection with

the translates of i(KX) in Σ, which we call β. Let j : KX ↪→ U(WX , K
X) be

the inclusion, and ̃ : U(WX , K
X)→ U(WX , K

X) the extension toU(WX , K
X).

Finally let ı̃WX
: U(WX , K

X) → Σ be the extension to U(WX , K
X) of the in-

clusion of KX into Σ.

U(WX , K
X)

Σ

U(WX , K
X)

ı̃WX

̃

ı̃WX

By Lemma 4.33 and the paragraph before it, the map ı̃WX
is simplicial and

surjective. This map induces a surjective map κ from WX to the translates

of the image of KX in Σ. Notice also that ̃ induces a map between the WX
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translates ofKX in U(WX , K
X) and theWX translates ofKX in U(WX , K

X),

ie a map between WX and WX . This is exactly the surjection φ. Thus κ ◦ φ

is a surjection from WX to the translates of KX in Σ, but by the uniqueness

part of Theorem 4.31, ı̃WX
= ı̃WX

◦ ̃, and this must be the bijection β. Since

β = κ ◦ φ is injective, φ must be injective, and so bijective.

3. The third follows immediately from the second.

4. Since (WX , X) is a Coxeter system, we can consider the set of reflections

R(WX , X) ⊂ R(W,S). The hyperplane arrangement HR(WX ,X) divides up

Σ so that HX bounds KX and no other hyperplanes in HR(WX ,X) meet the

interior of KX . The claim now follows by applying Proposition 4.17.

Continue to assume that ı̃WX
is a homeomorphism, and we prove that KX is

sharp-angled. Let r, r′ ∈ X , recall from Lemma 4.16 that Σr∩Σr′ = ∅ if and only if

rr′ has infinite order—in this case ∠rr′ = 0. Assume then that rr′ has finite order

m, and let K{r,r′} be the component of Σ − (Σr ∪ Σr′) which contains K; it also

contains the whole of KX . Since KX is a fundamental domain for WX acting on

Σ, as we proved in points 1 and 2 above, the set K{r,r′} is a fundamental domain

for the action of 〈r, r′〉 ⩽ WX on Σ. But 〈r, r′〉 is isomorphic to the dihedral group

of order 2m, and by considering its action on a Coxeter polytope neighbourhood

of a point in Σr ∩ Σr′ , as discussed under Theorem 4.26, we can conclude that

∠rr′ = π/m.

Conversely, assume thatKX is sharp-angled, and we prove that ı̃WX
is a home-

omorphism. Let [u, y] be a point in U(WX , K
X), then its stabiliser in WX is conju-

gate to the spherical subgroup ofWX generated by the sr ∈ SX such that y ∈ KX
sr ,

ie the elements of SX(y) (recall the notation from Definition 4.3). If SX(y) = ∅

then ı̃WX
is a homeomorphism on a small neighbourhood of y because y is not

contained in a mirror of KX .

Otherwise, the subgroup of W generated by {r ∈ R | sr ∈ SX(y)} is conju-

gate to a finite reflection subgroup contained in a maximal spherical subgroup

WT of W , for some T ⊂ S. Moreover in the cell structure on Σ mentioned in The-

orem 4.14, y is contained in a Coxeter polytope of type WT . By Theorem 6.4.3 in
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[32], the sharp-angled assumption implies that ı̃WX
is a homeomorphism when

restricted to this polytope.

Thus we have shown that ı̃WX
is locally a homeomorphism, in particular it is

locally injective. By Lemma 4.33, ı̃WX
is also surjective. Since Σ is simply con-

nected (in fact it is CAT(0) by Theorem 4.14), ı̃WX
is a homeomorphism.

In general, even ifX is sharp-angled, (WX , X) will not be equal to (W,S) since

X may not generateW . IfX does generateW , is sharp-angled, has no outliers, and

contains no repeated entries then it is necessarily that case thatX is a permutation

of S.

Note that the converse of the Theorem does not hold, there are examples of

Coxeter systems (WX , X) such that X is not sharp-angled, the simplest examples

coming from dihedral groups. Let W = 〈s, s′ | s2, s′ 2, (ss′)m〉 be the dihedral

group of order 2mwith Coxeter system (W,S) = (s, s′). Supposem > 3 is odd for

the sake of example, and let X = (r = s, r′ = s′ss′). Then WX
∼= W , (WX , X) is a

Coxeter system, but ∠rr′ = 2π/m. Another example comes from W (H3) and the

generating tuple coming from the exceptional automorphism in Proposition 3.34

which is illustrated in Figure 4.17d.

Remark 4.36 (Local injectivity and complexes of groups). Along the same lines as

in Remark 4.18, given a tuple of reflections X which contains no outliers we can

construct a complex of groups with underlying complexKX using the tautological

mirror structure and family of groups over X .

Then the space U(WX , K
X) is simply connected using Theorem 4.19. Point

1 follows since KX is a convex subset of Σ which is simply connected. Point 2

follows because X contains no outliers, and point 3 follows from Lemma 4.16.

The map ı̃WX
: U(WX , K

X) → Σ can be thought of as a developing map for

U(WX , K
X). The key to Theorem 4.34 is that this developing map is locally in-

jective if and only if X is sharp-angled.

Suppose X fails to be sharp-angled and r, r′ ∈ X such that ∠rr′ = kπ/m for

some natural numbers k and m with gcd(k,m) = 1. Then 〈r, r′〉 is isomorphic to

the dihedral group of order 2m. When building U(WX , K
X) there are 2m copies

ofKX corresponding to the elements of 〈r, r′〉. These are glued together such that
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they all meet in KX
r ∩KX

r′ . The result is that the total dihedral angle around this

intersection is 2πk.

Under the map ı̃WX
, this intersection is mapped to Σr ∩ Σr, around which the

total dihedral angle is 2π. Thus the developing map looks locally like a k-fold

branched cover near KX
r ∩KX

r′ . This phenomenon is illustrated in Figure 4.13.

K

ı̃WX

Σ

U(WX , K
X)

KX

Figure 4.13: The developing map fails to be locally injective if X is not sharp-angled. In
U(WX ,K

X), the two free purple edges are identified; they are drawn separate here for
clarity of the illustration.

4.3 Computing a Coxeter system from a reflection

system

The purpose of this Section is to use the criterion discussed in the last Section to

give an algorithm which turns an arbitrary reflection system (WX , X)with respect

to some Coxeter system (W,S) into a Coxeter system forWX . This gives a proof of

the well-known fact that any reflection subgroup of a Coxeter group is a Coxeter

group, and in fact outputs the canonical Coxeter system for WX .

Using the formulation of Theorem 4.34 gives a geometrically more intuitive

definition of this canonicity than is given by Deodhar’s original definition in terms
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of a pre-order on R [34]. This algorithm is alluded to in [42], although it is not

studied at all, and again the formulation there differs from the approach here. In

particular, we modify it in the next Section to work with reflection equivalence.

4.3.1 Transforming hyperplane arrangements

We describe three transformations, or moves, which can be applied to a tuple of

reflections X such that the result still generates the same subgroup of W .

Assumption 4.37. From now on, we allow X to contain elements in R ∪ {1}.

Before describing these moves, we usually do the following house-keeping op-

erations without comment.

Type 0 First we can permute the entries of X into any order, and second, if two

entries contain the same reflection, we can replace one of these entries with the

identity. In particular we can assume X has the form (r1, . . . , rk, 1, . . . , 1) where

the ri’s are pairwise distinct reflections.

In the following, assume r and r′ are distinct reflection entries of X . We give

an algebraic description of each move, then its geometric interpretation in Σ.

Type I Suppose r′ ∈ X is an outlier (see Definition 4.28), and choose a reduced

palindromic expression r′ = ws. Fix an r ∈ X such that `(rw) < `(w), then replace

r′ in X by rr′.

For the sake of illustration, consider the case that the hyperplanesΣr andΣr′ do

not intersect. Each divides Σ into two half-spaces, and the condition `(rw) < `(w)

is equivalent to saying that Σr separates Σr′ from K. The hyperplane Σrr′ is the

reflected image of Σr′ in Σr.

Σ

K

Σr

Σr′

Σ

K

Σr

Σrr′
or

Σ

K

Σr

Σr′

Σ

K

Σrr′

Σr
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Type II Suppose that ∠rr′ > π/2; there is some pair T = {s, s′} ⊂ S such that

mss′ < ∞ and so that 〈r, r′〉 is conjugate into the special dihedral subgroup WT .

We can write ∠rr′ = kπ/mss′ for some mss′/2 < k < mss′ . Let w ∈ W be the

unique minimal length element such that 〈r, r′〉 ⩽ wWT . Let t, t′ ∈ R(WT , T ) be

such that r = wt and r′ = wt′; because w is minimal length, `(r) = 2`(w) + `(t) and

`(r′) = 2`(w) + `(t′). Suppose further that `(t) ⩽ `(t′), then define t′′ = tt′, and

replace r′ in X with wt′′ = rr′.

The hyperplanes Σr and Σr′ intersect, and the sector they cut out of Σ which

containsK has obtuse dihedral angle kπ/mss′ . The move reflects Σr′ in Σr to bring

a non-obtuse angled sector closer to containing K.

Σ

K
kπ
m

Σr′

Σr

Σ

K kπ
m

Σr

Σrr′

or

Σ

K

kπ
m

Σr

Σr′

Σ

K
kπ
m

Σr

Σrr′

Type III Suppose ∠rr′ = kπ/m for some 1 < k < m− 1 such that gcd(k,m) = 1.

Then H = 〈r, r′〉 is a dihedral group of order 2m. Define T , w, t, and t′ as above.

Then there is some integer p such that pm = mss′ and ∠rr′ = pkπ/mss′ . Define a

new reflection

t′′ =

{
a2p−ℓ(t)(s

′, s) if `(t) < 2p

aℓ(t)−2p(s, s
′) if `(t) > 2p

and replace r′ in X with r′′ = wt′′. In [83] this type of move is called an angle-

deformation, and is used to study generating sets of Coxeter groups up to auto-

morphisms of the Coxeter group itself.

The hyperplanes Σr and Σr′ intersect at an angle which is a proper multiple

of π/m, such that the supplementary angle is also a proper multiple of π/m. We

replace Σr′ with another hyperplane Σr′′ such that either ∠rr′′ or π−∠rr′ is π/m.
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Σ

K kπ
m

Σr

Σr′

Σ

K
π
m

Σr Σr′′

or

Σ

K
kπ
m

Σr Σr′

Σ

K
π
m

Σr

Σr′′

4.3.2 Decreasing complexity

Definition 4.38. Given a tuple of reflections X , we define its complexity to be

c(X) =
∑
r∈X

`(r).

LEMMA 4.39: Let X be a tuple or reflections, and let X ′ be obtained from X by one of the

moves described above. Then 〈X〉 = 〈X ′〉, and except when X ′ is merely a permutation

of X , c(X ′) < c(X).

Proof. This is true for the type 0 moves. For a move of type I and II, the reflection

r′ ∈ X is replaced by rr′, where r is another reflection in X . So X and X ′ generate

the same subgroup. For type III moves, it is straightforward to check that t′′ lies in

the group generated by t and t′, and so the dihedral group generated by (r, r′′) is

equal (as a subgroup ofW ) to 〈r, r′〉. Again,X andX ′ generate the same subgroup.

Now we compute complexities

For type I Since `(rw) < `(w), we compute

`(rr′) = `(rws) ⩽ 2`(rw) + 1 < 2`(w) + 1 = `(r′).

For type II Recall the notation from Example 4.25. We assumed that `(t) ⩽ `(t′),

and since they are elements of the finite dihedral special subgroup W{s,s′} we can

write t as a reduced expression over T = {s, s′} of length `(t)

t = aℓ(t)(s, s
′) (possibly after swapping the roles of s and s′).

Also write t′ as a reduced word of length `(t′); there are two cases: (1) t′ = aℓ(t′)(s, s
′),

or (2) t′ = aℓ(t′)(s
′, s).

We want to compute `(tt′)—assume we are in case (1) and 2`(t) < `(t′), then

we can cancel all occurrences of ss and s′s′ to get
tt′ = aℓ(t)(s, s

′) · aℓ(t′)(s, s′) · aℓ(t)(s, s′) = aℓ(t′)−2ℓ(t)(s
′, s).
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Since 0 < `(t′)− 2`(t) < `(t′) ⩽ mss′ this is a reduced expression and `(tt′) < `(t′).

If we are in case (1) but 2`(t) > `(t′) then
tt′ = aℓ(t)(s, s

′) · aℓ(t′)(s, s′) · aℓ(t)(s, s′) = a2ℓ(t)−ℓ(t′)(s, s
′).

In this case 0 < 2`(t) − `(t′) < 2`(t′) − `(t′) = `(t′) < mss′ so again the expression

above is reduced and `(tt′) < `(t′).

Note that in case (1) we did not have to explicitly use the assumption that ∠rr′

is obtuse because this is guaranteed by the fact that the reduced words for t and t′

start with the same letter. On the other hand, if we are in case (2) we need to use

this assumption explicitly. From Example 4.25, using ∠rr′ = kπ/mss′ , we can see

that 2k = `(t) + `(t′). But by assumption k > mss′/2 because the angle is obtuse,

so

`(t) + `(t′) > mss′ . (4.1)

We can write
tt′ = aℓ(t)(s, s

′) · aℓ(t′)(s′, s) · aℓ(t)(s, s′) = a2ℓ(t)+ℓ(t′)(s, s
′).

If 2`(t) + `(t′) < 2mss′ we can apply the relation (ss′)mss′ = 1 in WT to conclude

that a2mss′−(2ℓ(t)+ℓ(t′))(s
′, s) is a reduced expression for tt′, so

`(tt′) = 2mss′ − (2`(t) + `(t′))
(4.1)
< 2(`(t) + `(t′))− (2`(t) + `(t′)) = `(t′).

Otherwise, 2mss′ < 2`(t) + `(t′) < 3`(t′) ⩽ 3mss′ , in which case we can again

apply the relation to see that tt′ has a reduced expression a2ℓ(t)+ℓ(t′)−2mss′
(s, s′). In

Example 4.25 we observed that there is a unique maximum length element inWT ,

with length mss′ . By assumption t 6= t′ and `(t) < `(t′), so `(t) < mss′ , and hence

`(tt′) = 2`(t) + `(t′)− 2mss′ < 2`(t) + `(t′)− 2`(t) = `(t′).

In all cases we have shown that `(tt′) < `(t′), and hence

`(rr′) = `(wt′′) = 2`(w) + `(t′′) = 2`(w) + `(tt′) < 2`(w) + `(t′) = `(r′).

For type III If t′′ = aℓ(t)−2p(s, s
′), then `(t′′) < `(t) ⩽ `(t′). For the other case

t′′ = a2p−ℓ(t)(s
′, s) and `(t) < 2p. If t′ = aℓ(t′)(s

′, s) then from Example 4.25 we

know
∠tt′ = `(t) + `(t′)

2

π

mss′
=
pkπ

mss′
,
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so `(t′) = 2pk + `(t)
k⩾2

⩾ 4p+ `(t) > 2p− `(t) = `(t′′). Else if t′ = aℓ(t′)(s, s
′) then

∠tt′ = `(t) + 2mss′ − `(t′)
2

π

mss′
=
pkπ

mss′
,

so

`(t′) = `(t) + 2mss′ − 2pk
k⩽m−2

⩾ `(t) + 2mss′ − 2p(m− 2)

= `(t) + 2mss′ − 2mss′ + 4p = `(t) + 4p > 2p− `(t) = `(t′′).

In both cases we have shown that `(t′′) < `(t′), and hence

`(r′′) = `(wt′′) = 2`(w) + `(t′′) < 2`(w) + `(t′) = `(r′).

4.3.3 Algorithms for studying reflection systems

The first main result of this Chapter is the following Theorem, which allows us to

study properties for reflection subgroups of arbitrary Coxeter systems.

THEOREM 4.40: Let (W,S) be a Coxeter system, and letX be a finite tuple of reflections in

W . Then there is an algorithm which produces a Coxeter system (WX , X̃) for the reflection

subgroup generated by X .

Proof. Apply moves of type I–III to X as many times as is possible. Only a fi-

nite number of these moves can be performed since c(x) is finite, and each move

decreases the complexity. Delete all entries which are the identity and call the

resulting tuple X̃ .

Since we cannot apply any type I moves to X̃ it contains no outliers, and hence

we can define KX̃ with its tautological mirror structure and family of groups.

Since we cannot apply any type II moves, all angles in KX̃ are non-obtuse, and

since no type III moves are possible they must be sharp-angled. Applying Theo-

rem 4.34 we conclude that (WX , X̃) is a Coxeter system.

Compare this with the proof of Proposition 3.7 in [42] and the exposition of

that result in Section 3 of [111]. There a finite procedure to find (WX , X̃) from
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(WX , X) is given along the following lines. For a tuple of reflections X ′ define

χ(WX′) := {r ∈ WX′ ∩R(W,S) | `S(rr′) > `S(r)

for all r′ ∈ WX′ ∩R(W,S)

such that r 6= r′}.

This gives the canonical set of Coxeter generators for WX′ mentioned in Theo-

rem 4.26. Then the procedure produces a sequence of reflection generating tuples

X = X0, X1, X2, . . . where Xi is obtained from Xi−1 by replacing a pair of genera-

tors (r1, r2) with χ(〈r1, r2〉) (as long as (r1, r2) 6= χ(〈r1, r2〉)). Proposition 3.7 in [42]

states that this sequence terminates in X̃ = χ(WX).

The key differences between this approach and our proof of Theorem 4.40 are

two-fold. Firstly, the moves I–III give a way to compute χ(〈r1, r2〉) which can be

implemented as a practical algorithm—in particular applying all possible type I

moves if 〈r1, r2〉 is infinite, and all possible type II and III moves if 〈r1, r2〉 is finite.

Second we can leverage these moves to study reflection equivalence, as we do in

the next Section.

COROLLARY 4.41: Let (W,S) be a Coxeter system, and let X be a finite tuple of reflec-

tions in W . If WX is finite index in W , then there is an algorithm to compute this index

[W : WX ].

Proof. Applying the algorithm above yields, by Theorem 4.34, a strict fundamental

domain KX̃ for the action of WX on Σ. This contains the fundamental chamber

K, and is tiled by translates of K. The index [W,WX ] equals the number of these

translates.

Using the linearity ofW we can solve the word problem, and hence enumerate

the elements of W by their length. The translate wK belongs to KX̃ if and only

if `(rw) > `(w) for all r ∈ X̃ . There is some uniform bound on the length of the

w ∈ W such thatwK ⊂ KX̃ , since this set is finite; and once we reach a point where

all translates of K by elements of W of some fixed length do not lie in KX̃ , then

we have found all W -translates of K in KX̃ , and hence computed the index.
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COROLLARY 4.42: Let (W,S) be a Coxeter system, and letX be a finite tuple of reflections

in W . There is an algorithm to determine whether X generates W .

Proof. SinceW has index 1 in itself, we can apply the proof of the previous result to

conclude that KX̃ = K, and hence X generates W if and only if X̃ is the standard

generating tuple, S, for W .

This algorithm gives a relatively straightforward way to test whether a tuple

X of reflections generatesW , but we can also extract a necessary condition which

can be checked against X directly and is useful later.

COROLLARY 4.43 (Compare with Lemma 6.4 in [111]): Let (W,S) be a Coxeter system

of rank n. If X = (r1, . . . , rℓ) is a finite tuple of reflections which generates W , then there

is some permutation σ ∈ Sℓ such that for 1 ⩽ i ⩽ n, rσ(i) is conjugate to si.

4.4 Equivalence of reflection generating tuples

The algorithm we developed in the previous Section is useful for studying reflec-

tion subgroups of Coxeter systems, but not all of the moves described are reflec-

tion equivalences. Moves of type 0 are elementary Nielsen transformations of type

(T1) and (T3*). Notice also that moves of type I and II are transformations of type

(T4). On the other hand, Theorem 2.1 illustrates that in general moves of type III

cannot be achieved even by combinations of elementary Nielsen transformations,

never mind by reflection equivalences.

THEOREM 4.44: Let (W,S) be a Coxeter system, and X a finite tuple of reflections which

generate W . Then X is reflection equivalent to a tuple X̃ containing no outliers and such

that for any distinct reflections r, r′ ∈ X̃ , ∠rr′ ⩽ π/2.

Proof. Similar to the proof of Theorem 4.40 we can apply moves of type 0–II toX a

finite number of times until no more moves are possible. As remarked above, each

move is a reflection transformation. Call the result X̃ . Since no type I moves are

possible there are no outliers, and since no type II moves are possible, all angles

are non-obtuse.
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Note that X̃ is not unique in general, and nor are the angles ∠rr′. We demon-

strate this in the case of the dodecahedral group W (H3) in Example 4.51.

We can view part of Theorem 2.1 as a special case of this Theorem. A pair of

reflections generate W (I2(k)) if and only if the angle between their correspond-

ing hyperplanes is π`/k for some 1 ⩽ ` < k such that gcd(`, k) = 1, otherwise

we could apply Theorem 4.40 to produce a sharp-angled pair of generators which

meet at angle π/(k/ gcd(`, k)) and hence generate a proper subgroup isomorphic

to W (I2(k/ gcd(`, k))). Now applying Theorem 4.44 to this generating pair of re-

flections we can replace them by a pair which meet at some non-obtuse angle π`/k

for some 1 ⩽ ` ⩽ k/2, so that their product is a rotation by 2π`/k. Compare also

this dihedral case to Theorem 1.22.

In some special cases, not being able to use moves of type III has no effect on

the algorithm, giving the strongest possible reflection equivalence classification

of reflection generating tuples. This applies to RACGs, Weyl groups, and affine

Coxeter systems, as well as direct and free products of groups of these types.

COROLLARY 4.45: Let (W,S) be a Coxeter system such that mss′ ∈ {2, 3, 4, 6,∞} for all

s 6= s′ ∈ S. Then if X is a reflection generating tuple, then it is reflection equivalent to (a

stabilisation of) the standard generating tuple S.

Remark 4.46 (Reflection equivalence and rigidity). Note that this result cannot be

deduced simply by considering rigidity. While strong reflection rigidity is enough

to guarantee that all Coxeter generating tuples S ′ for a Coxeter system (W,S) such

that S ′ ⊂ R(W,S) are reflection equivalent (see Definition 2.9), not all Coxeter

systems with mss′ ∈ {2, 3, 4, 6,∞} are strongly reflection rigid. Indeed not even

all finite (Theorem 2.11) or RACGs (Theorem 2.10) are strongly reflection rigid.

Proof. If ∠rr′ = kπ/mss′ is non-obtuse for mss′ ∈ {2, 3, 4, 6} and gcd(k,mss′) = 1,

then it is sharp—or in other words it is never possible to apply a move of type III

to X . Therefore the conclusion follows from the proof of Corollary 4.42.

Recall Lemma 2.8 and Remark 1.18: for reflection equivalence, and more gen-

erally Nielsen equivalence, all generating tuples become equivalent after perform-

ing n stabilisations where n is the Coxeter rank or algebraic rank respectively. We
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can extend this Corollary to all Coxeter systems at the cost of performing only a

single stabilisation—in other words, if we perform a single stabilisation all reflec-

tion generating tuples become equivalent to a stabilisation of the standard gener-

ating tuple no matter how large the Coxeter rank is.

THEOREM 4.47: Let (W,S) be a Coxeter system and suppose X is a reflection generat-

ing tuple. If X is reducible (see Definition 2.6), then it is reflection equivalent to some

stabilisation of the standard generating tuple S. In particular, after performing a single

stabilisation, every reflection generating tuple is equivalent to some stabilisation of S.

Proof. We show that if X = (. . . , r, . . . , r′, . . . , 1) and a type III move is possible

with r and r′, then this move can be achieved by a sequence of transformations

of type (T1), (T3*), and (T4). The conclusion then follows by the proof of Corol-

lary 4.42.

A type III move has the effect of changing

(. . . , r, . . . , r′, . . . , 1) 7→ (. . . , r, . . . , r′′, . . . , 1)

where r′′ is some reflection in 〈r, r′〉. But this means that r′′ is expressible as a

palindromic word over {r, r′} which can be built by a (T3*) transformation fol-

lowed by a sequence of (T4) transformations. For the sake of illustration suppose

r′′ = ad(r
′,r)−1

r, then:

(. . . , r, . . . , r′, . . . , 1)
(T3∗)7→ (. . . , r, . . . , r′, . . . , r)

(T4)7→ (. . . , r, . . . , r′, . . . , r
′
r)

(T4)7→ (. . . , r, . . . , r′, . . . , rr
′
r)

...
(T4)7→ (. . . , r, . . . , r′, . . . , ad(r

′,r)−1

r)

(T1)7→ (. . . , r, . . . , r′′, . . . , r′)

Now 〈r, r′′〉 = 〈r, r′〉, so r′ can be expressed as a word over {r, r′′}, and so by a

similar reverse process we show

(. . . , r, . . . , r′′, . . . , r′) 7→ (. . . , r, . . . , r′′, . . . , 1)

is a reflection equivalence, completing the proof.
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Example 4.48. Consider the 555 triangle group which acts cocompactly on the

hyperbolic plane and which has Coxeter-Dynkin diagram

s1

s2 s3

5

5

5

We will study this group rigorously in Example 4.53 below, however for now

consider the reflection generating tuple X = (s1,
s2s1,

s3s1). This tuple satisfies the

conclusion of Theorem 4.44 but is not sharp-angled. The corresponding hyper-

plane arrangement is shown in Figure 4.14.

s1

s2s1

s3s1

K
s1 s2

s3

Figure 4.14: A finite portion of the hyperplane arrangement of the 555 triangle group
viewed as a subset of the hyperbolic plane, together with the hyperplane arrangement
associated to X in purple. The Davis complex is homeomorphic to the barycentric subdi-
vision of this picture (compare with Remark 4.35).

We illustrate that after performing a single stabilisation, X becomes reflection

equivalent to (s1, s2, s3, 1), a stabilisation of S. First, the reflection s3 lies in the

dihedral subgroup generated by the sub-tuple (s1,
s3s1) of (s1, s2s1, s3s1, 1), so we

can apply a sequence of reflection equivalences to transform

(s1,
s2s1,

s3s1, 1) 7→ (s1,
s2s1,

s3s1, s3); s3 =
(s3s1)s1(s3s1).
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Next, s3s1 lies in the dihedral group generated by (s1, s3), so we can apply a se-

quence of reflection equivalences to transform

(s1,
s2s1,

s3s1, s3) 7→ (s1,
s2s1, 1, s3).

This frees up an new slot in the generating tuple containing the identity and which

we can use to apply the argument again—this is why only ever performing a single

stabilisation is required. The reflection s2 lies in the dihedral group generated by

(s1,
s2s1):

(s1,
s2s1, 1, s3) 7→ (s1,

s2s1, s2, s3),

and then s2s1 lies in the dihedral group generated by (s1, s2):

(s1,
s2s1, s2, s3) 7→ (s1, 1, s2, s3).

After a final permutation we are left with (s1, s2, s3, 1), a stabilisation of (s1, s2, s3).

This process is illustrated in Figure 4.15.

Theorem 4.47 does not, of course, imply that all reflection generating tuples

for a Coxeter system (W,S) of size greater than #S are equivalent to a stabilisa-

tion of the standard generating tuple. We know of no examples of non-minimal

reflection generating tuples which are not reflection equivalent to a stabilisation

of the standard one.

Question 4.49. Let (W,S) be a Coxeter system, andX a reflection generating tuple

of W which is strictly bigger than S. Is it necessarily the case that X is reflection

equivalent to a stabilisation of S?

4.5 Triangle groups

Having completely understood the rank two case in Theorem 2.1, the next class

of groups to look at are the rank three Coxeter groups. It turns out almost all of

these act co-finitely on a two dimensional space of constant curvature, and if all
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(s1,
s2s1,

s3s1, 1)

K

(s1,
s2s1,

s3s1, s3)

K

(s1,
s2s1, 1, s3)

K

(s1,
s2s1, s2, s3)

K

(s1, 1, s2, s3)

K

Figure 4.15: Transforming a stabilisation of one reflection generating tuple into a stabili-
sation of the standard generating tuple. Trivial generators are not shown.



REFLECTION EQUIVALENCE IN COXETER SYSTEMS 149

mij’s are finite the action is co-compact. We summarise this well-known fact in

the following Proposition.

PROPOSITION 4.50: Let (W,S) be a rank three Coxeter system, and define

∆ =
1

m12

+
1

m23

+
1

m31

.

Then (W,S) acts by isometries on X2 where

X2 =


S2 if ∆ > 1

E2 if ∆ = 1

H2 if ∆ < 1.

If {m12,m23,m31} = {2, 2,∞} then X2 = E2 and the action has fundamental domain an

half-infinite strip; otherwise the action has fundamental domain a finite area triangle with

interior angles π/m12, π/m23, and π/m31. If all mij’s are finite, then the fundamental

domain is compact.

We now want to use the characterisation of reflection equivalence classes to

classify all reflection generating triples in triangle groups.

4.5.1 Reducible Coxeter systems

If (W,S) is reducible of rank 3 then it is the direct productW (
s1

)×W (s2 s3
k

)

for some k ⩾ 2, and if k < ∞ then it acts on S2. If X = (r1, r2, r3) is a reflection

generating triple, then by Corollary 4.43, after applying a permutation we can

assume that r1 is conjugate to s1.

But the only such reflection in W is s1 itself, so we can assume that X =

(s1, r2, r3) where (r2, r3) generatesW (s2 s3
k

). The reflection equivalence clas-

sification for dihedral groups is the same as the Nielsen equivalence classification,

see Theorem 2.1. The presence of s1 does not identify any otherwise inequivalent

generating pairs since s1 lies in the centre of W .
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4.5.2 Irreducible spherical and affine Coxeter systems

If (W,S) is a Weyl group or affine then its Coxeter-Dynkin diagram is one of the

following:

s1 s2 s3

A3

s1 s2 s3

4

B3

s1

s2 s3

Ã2

s1 s2 s3

4 4

B̃2

s1 s2 s3

6

G̃2

Figure 4.16: Irreducible rank 3 Weyl group or affine Coxeter system Coxeter-Dynkin dia-
grams.

In particular, Corollary 4.45 guarantees that all reflection generating triples are

reflection equivalent to (s1, s2, s3). The only remaining case is the dodecahedral

group.

Example 4.51. Consider W (H3) which has Coxeter-Dynkin diagram

s1 s2 s3

5

Given a reflection generating triple X = (r1, r2, r3) we can consider the triple

of angles (∠r1r2,∠r2r3,∠r3r1). By Theorem 4.44, we can assume that X is a triple

where these angles are non-obtuse, ie they lie in the set {π/2, π/3, π/5, 2π/5}.

Thinking geometrically, KX is a spherical triangle with internal angles from that

set and hence is uniquely defined up to congruence. Considering all finitely many

possible triples of angles, there are only five which are realised by reflection triples

X up to permutations:

(π
2
,
π

3
,
π

5

)
,

(
π

2
,
π

5
,
2π

5

)
,

(
π

3
,
π

3
,
2π

5

)
,

(
π

2
,
π

3
,
2π

5

)
,

(
2π

5
,
2π

5
,
2π

5

)
.

Up to overall conjugation and permutation, there is just one reflection triple cor-

responding to each of these triples of angles. Respectively, these are:

(s1, s2, s3), (s1,
s2s3, s3), (s1, s2,

s3s2), (s1,
s2s3s1s2, s3), (

s1s2s3,
s2s3, s3).
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The corresponding hyperplane arrangement for each is shown in Figure 4.17. They

do not all represent distinct reflection equivalence classes. First:

(s1,
s2s3, s3)→

(
s1,

s2s3,
(s2s3)s3

)
= (s1,

s2s3,
s3s2)

→
(
s1,

(s3s2)(s2s3),
s3s2
)
= (s1, s2,

s3s2)

and second:

(s1,
s2s3s1s2, s3)→

(
(s2s3s1s2)s1,

s2s3s1s2, s3
)
= (s1s2s3,

s2s3s1s2, s3)

→
(
s1s2s3,

(s1s2s3)(s2s3s1s2), s3
)
= (s1s2s3,

s2s3, s3) .

These equivalences can be seen in Figure 4.17. In both cases, two of the gener-

ators r and r′ generate a parabolic subgroup isomorphic to Dih5. Each pair of

equivalent tuples is related by conjugating r and r′ by rr′ or its inverse, a rota-

tion through 4π/5. Since there are only finitely many reflections in W (H3) one

can check exhaustively that there are no other reflection equivalences and hence

there are three reflection equivalence classes overall.

4.5.3 Hyperbolic Coxeter systems

There are a finite number of hyperbolic triangle groups to which we can apply

Corollary 4.45. For a hyperbolic triangle group which do not fall into this cat-

egory, we can proceed in a similar way to how we tackled the H3 case. Given

m12, m23, and m31 there are only finitely many possibilities for the triple of angles

(∠r1r2,∠r2r3,∠r3r1), and many of these are not realised by any reflection gener-

ating triple (r1, r2, r3). Often many triples can be excluded for simple reasons, see

the example below.

LEMMA 4.52: Let (W,S) be a freely indecomposable hyperbolic triangle group. Suppose

that (0, 0, πk/m) is a triple of non-obtuse angles for some m ∈ {m12,m23,m31}. If there

is a reflection generating triple X = (r1, r2, r3) which realises these angles, then X is

reflection equivalent to a triple of reflections whose triple of angles is (0, πk/m, θ) where

0 < θ ⩽ π/2.
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s1

s2
s3

(a) (s1, s2, s3)

s1

s2s3

s3

(b) (s1, s2s3, s3)

s1

s2
s3s2

(c) (s1, s2, s3s2)

s1

s2s3s1s2

s3

(d) (s1, s2s3s1s2, s3)

s1s2s3
s2s3

s3

(e) (s1s2s3, s2s3, s3)

Figure 4.17: Five generating tuples of reflections for W (H3). In each case the fundamental
chamber is shown in black, and the hyperplanes fixed by the generators are shown in red.
The pairs of tuples (b) and (c), and (d) and (e) are reflection equivalent.
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Proof. We have

∠r1r2 = 0 = ∠r2r3, and∠r3r1 = kπ/m.

First note that k > 0, because otherwise X generates a freely decomposable Cox-

eter group isomorphic toZ2∗Z2∗Z2. Applying Theorem 4.40 toX , we must be able

to apply a sequence of type II moves to show that there is a reflection r ∈ 〈r1, r3〉

such that ∠rr2 = θ > 0, because otherwise the Coxeter generating tuple X̃ this

Theorem 4.44 produces corresponds to a freely decomposable Coxeter system.

Now, r is conjugate in 〈r1, r3〉 to one of r1 or r3, say r = wr3. Applying a

suitable sequence of partial conjugations it follows that X is reflection equiva-

lent to (wr1, r2,
wr3) = (wr1, r2, r), which has the corresponding triple of angles

(0, θ, πk/m). That ∠ wr3r1 = 0 can be seen from Figure 4.18. If θ > π/2 we can re-

place wr1 by rwr1 which replaces θ with π− θ. Thus we have got th triple of angles

we needed, up to a permutation.

r1
r2

r3

kπ
m

wr1

r2 r

kπ
m

θ

Figure 4.18: Transforming a reflection generating tuple with angles (0, 0, kπ/m) into one
with angles (0, kπ/m, θ).

Up to an overall conjugation there are only finitely many reflection generating

triples with a given triple of angles (at most one of which is 0), and one can enu-

merate these. We omit the details, but the idea is as follows. Fix a discrete co-finite

action ofW by isometries on H2 such that the generators act by reflections, and let

ρ : W → Isom(H2) be the corresponding representation. In particular, this means

that if mij =∞ for some pair (i, j) then the product sisj acts by a parabolic isom-

etry. The geometry of the hyperbolic plane and of the hyperplane arrangement



154 TRIANGLE GROUPS

coming from the set of all reflections in W allow one to find all finitely many re-

flection triples (up to conjugation) which realise a certain triple of angles. One can

then apply Corollary 4.42 to check whether this triple generates W . Lemma 4.52

reduces the space of reflection triples which must be checked.

Example 4.53. We illustrate what happens in the 555 triangle group, which has

Coxeter-Dynkin diagram

s1

s2 s3

5

5

5

Up to permutations, the possible triples of angles are

(
π
5
, π
5
, π
5

)
,

(
π
5
, π
5
, 2π

5

)
,
(
π
5
, 2π

5
, 2π

5

)
,(

π
5
, π
5
, 0
)
,

(
π
5
, 2π

5
, 0
)
,

(
π
5
, 0, 0

)
,(

2π
5
, 2π

5
, 2π

5

)
,
(
2π
5
, 2π

5
, 0
)
,
(
2π
5
, 0, 0

)
.

We can immediately exclude
(
π
5
, 2π

5
, 0
)

and
(
π
5
, 0, 0

)
as these are sharp-angled

and so any corresponding reflection triple cannot generateW . We can also ignore(
2π
5
, 0, 0

)
by Lemma 4.52. The angle sums for

(
π
5
, 2π

5
, 2π

5

)
and

(
2π
5
, 2π

5
, 2π

5

)
are greater

than or equal to π, and so there are no hyperbolic triangles with these internal

angles. Finally we can exclude
(
π
5
, π
5
, 2π

5

)
. This is because a hyperbolic triangle

with these angles has area π/5, but it is tiled by copies of the fundamental domain

forW acting on H2, which is a hyperbolic triangle with angles
(
π
5
, π
5
, π
5

)
, and hence

area 2π/5, which is not possible. Thus we are left with three viable triples:

(π
5
,
π

5
,
π

5

)
,

(
π

5
,
2π

5
, 0

)
,

(
2π

5
,
2π

5
, 0

)
.

It turns out that each of these can be realised, and in a unique way up to an overall

conjugation and a diagram automorphism. Examples of reflection triples which

do this are

X1 = (s1, s2, s3), X2 = (s1, s2,
s3s1), X3 = (s1,

s2s1,
s3s1),
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respectively. The hyperplane arrangements corresponding to these generating tu-

ples are shown in Figure 4.19.

X1 = (s1, s2, s3)

K

X2 = (s1, s2,
s3s1)

K

X3 = (s1,
s2s1,

s3s1)

K

Figure 4.19: The hyperplane arrangements associated to three reflection generating tuples
of the 555 triangle group. These are visualised in a finite portion of hyperbolic plane,
compare with Figure 4.14.

It is not obvious that any of these are reflectionequivalent to each other but,

unlike the case of W (H3), W is infinite, so it is not clear how to verify this by an

exhaustive check. Instead, we need to use an invariant. The 555 triangle group

was chosen for this example since it is the simplest example for which we have a

chance of usefully applying the invariant we developed in Section 2.2.4.

Note that X1 = S, so we compute χη where η : ZW → Z5 = A is the composi-

tion ξ ◦ηab mapping each generator si to−1. Thus the correction ideal is the trivial

ideal, and AW = {±1}.

For X2 we have

φ(∂S(X2)) = φ


∂x1x1 ∂x2x1 ∂x3x1

∂x1x2 ∂x2x2 ∂x3x2

∂x1x3x1x3 ∂x2x3x1x3 ∂x3x3x1x3



= φ


1 0 0

0 1 0

x3 0 1 + x3x1

 =


1 0 0

0 1 0

s3 0 1 + s3s1

 .
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Then we can compute

χη(X2) = det(η(φ((∂S(X2)))) = det

 1 0 0
0 1 0
−1 0 2

 = 2.

Since this does not lie in AW , we can conclude that S = X1 andX2 are not Nielsen

equivalent, and so definitely not reflection equivalent. On the other hand, for X3

we have

φ(∂S(X3)) = φ


∂x1x1 ∂x2x1 ∂x3x1

∂x1x2x1x2 ∂x2x2x1x2 ∂x3x2x1x2

∂x1x3x1x3 ∂x2x3x1x3 ∂x3x3x1x3



= φ


1 0 0

x2 1 + x2x1 0

x3 0 1 + x3x1

 =


1 0 0

s2 1 + s2s1 0

s3 0 1 + s3s1

 .

Then we can compute

χη(X3) = det(η(φ((∂S(X2)))) = det

 1 0 0
−1 2 0
−1 0 2

 = −1 ∈ AW .

This invariant cannot distinguishX1 andX3, so we cannot tell whether or not they

are equivalent.

4.A Appendix: simplicial complexes

In this Appendix we introduce the the relevant background on simplicial com-

plexes which are used to define the Davis complex.

4.A.1 Posets

Before talking about complexes, we introduce posets which are extremely useful

when defining and manipulating simplicial complexes.

Definition 4.54. A poset (short for partially ordered set) is a pair (A,�) consisting

of a non-empty set A and a binary relation � on A which satisfies:
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1. (reflexivity) a � a for all a ∈ A

2. (antisymmetry) if a � b and a � b then a = b

3. (transitivity) if a � b and b � c then a � c

We write a ≺ b if a � b and a 6= b.

Given two posets (A,�) and (A′,v), a poset isomorphism between them is a

bijective map f : A→ A′ such that for any a, b ∈ A, a � b if and only if f(a) v f(b).

Example 4.55. Let P be any set andA a non-empty collection of subsets of P . Then

(A,⊆) is a poset ordered by set inclusion.

Every poset naturally gives rise to a dual poset.

Definition 4.56. Let (A,�) be a poset, then the opposite relation on A to � is the

binary relation
op
� defined by

a
op
� b if and only if a � b,

for all a, b ∈ A.

It is straightforward to check that (A,�)op := (A,
op
�) is another poset structure

on A. A second way to create a new poset from an old one is to look at the chains

it contains.

Definition 4.57. Let (A,�) be a poset. A chain is a subset {a0, a1, . . . , ak} ofA such

that a0 ≺ a1 ≺ · · · ≺ ak. Such a chain has length k. Denote the set of chains in

(A,�) by Ch(A,�).

The set of chains in a poset is naturally ordered by inclusion, giving rise to the

poset (Ch(A,�),⊆).

Definition 4.58. The height of a poset is the maximum length of a chain in that

poset. If no maximum exists, the poset will have infinite height.

Assumption 4.59. From now on we shall only consider posets whose underlying

set is countable and which have finite height.
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4.A.2 Abstract and geometric simplicial complexes

We can now define abstract simplicial complexes.

Definition 4.60. Let V be a countable set which will be called the set of vertices.

An abstract simplicial complex is the pair (V,A), whereA is a collection of subsets

of V such that

1. Each subset is finite

2. For each v ∈ V , {v} ∈ A

3. A is closed under taking subsets

An element a ofA is called a k-simplex where k = #a− 1, and k is the dimension

of a. If a is a k-simplex then any subset b ⊂ a again belongs to A and is called a

face of a. The collection A is called the set of simplices.

For an integer k ⩾ 0, the k-skeleton of an abstract simplicial complex is

(V, {a ∈ A | dimension of a is at most k).

A contains the empty set ∅which is the unique simplex of dimension−1 called

the empty simplex. An abstract simplicial complexA has a natural poset structure

under set inclusion; the poset (A,⊆) is called the poset of simplices of A.

To any abstract simplicial complex we can associate a topological space which

is simply called a simplicial complex.

Definition 4.61. Let A be an abstract simplicial complex with vertex set V and

fix some order on V . Let RV :=
⊕

v∈V R be the real vector space which is the

direct sum of copies of R indexed by V . In particular, all but finitely many of the

coordinates of any point in RV are zero. For a ∈ A, let

σa := {(xv)v∈V | xv ⩾ 0with equality for all v 6∈ a and,
∑

v∈a xv = 1}.

This set is the convex hull of the standard basis vectors in RV corresponding to

the vertices in a, it is called the (geometric) simplex associated to a. Consider
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the set C =
⋃
a∈A σa with the subspace topology induced from RV . The (geomet-

ric) simplicial complex associated to A consists of the space C together with the

collections of subsets Ck = {σa | a ∈ A is a k-simplex} for k ∈ {0, 1, . . . }.

Given a simplicial complex (C, {Ck}k⩾0) one can recover its original abstract

simplicial complex as follows. Let V be the set of points in x ∈ RV such that

{x} ∈ C0. Then define A to be

∞⋃
k=0

⋃
σ∈Ck

{{x ∈ V | x ∈ σ}}.

Assumption 4.62. Every abstract simplicial complex can be turned into a geomet-

ric simplicial complex, and the abstract simplicial complex can be recovered from

this topological space together with its decomposition into geometric simplices.

Therefore, we will make no distinction between abstract and geometric simplicial

complexes hereafter.

4.A.3 The geometric realisation of a poset

We have seen that every abstract simplicial complex is a poset, however not ev-

ery poset is isomorphic to the poset of simplices of a simplicial complex (recall

Assumption 4.59, we only consider countable finite height posets). Nevertheless

there is a way to associate a simplicial complex to any poset.

Definition 4.63. The geometric realisation of a poset (A,�) is the simplicial com-

plex (A,Ch(A,�)).

This name is standard, albeit a little confusing since the definition is given as

an abstract simplicial complex, not a geometric one. Moreover, if (A,⊆) is the

poset of simplices of an abstract simplicial complex (V,A), then its geometric re-

alisation as a poset is not the corresponding geometric simplicial complex from

Definition 4.61.

The poset of simplices of (A,Ch(A,�)) is exactly the poset (Ch(A,�),⊆) men-

tioned after Definition 4.57.
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4.A.4 Cones and subdivisions

We will define two operations which can be applied to modify a simplicial com-

plex. The first is taking the simplicial cone of a complex.

Definition 4.64. Let (V,A) be a simplicial complex. The cone over this complex is

the simplicial complex

Cone(V,A)) = (V ∪ {v0},A ∪ {a ∪ {v0} | a ∈ A}),

where v0 6∈ V is a new vertex called the cone point.

Topologically, the cone over a complex C can be thought of as the the space

C × [0, 1]/ ∼, where (x, 1) ∼ (y, 1) for all x, y ∈ C. The image of (C, 1) in the

quotient is a single point, the cone point. The second operation does not change

the topology of the complex, only its combinatorial structure.

Definition 4.65. The barycentric subdivision of a simplicial complex (V,A) is the

geometric realisation of the poset of simplices (A,⊆), denoted Bs(V,A).

The 0-simplices of Bs(V,A) are the chains in (A,⊆) of length 0, ie chains of the

form {a} for a ∈ A. The 0-simplex {a} of Bs(V,A) is called the barycentre of the

simplex a in (V,A). Thus the vertex set of Bs(V,A) is exactly the set of simplices

of (V,A), A.

Remark 4.66 (Ordering vertices in Bs(V,A)). The poset of cells (A,⊆) therefore

defines a partial ordering on the vertices of Bs(V,A). Given a simplex of Bs(V,A),

ie a chain {a0, a1, . . . , ak} where a0 ⊂ a1 ⊂ · · · ⊂ ak, we can say that a0 is the

minimum vertex in this simplex.

4.A.5 Cayley graph of a Coxeter system

A special case of a simplicial complex is a graph, ie a simplicial complex which

contains no simplices with dimension greater than 1. Here we define the Cayley

graph of a Coxeter system.
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Definition 4.67. Let (W,S) be a Coxeter system. The Cayley graph of (W,S) is the

simplicial complex (W,A) where

A = {∅} ∪ {{w} | w ∈ W} ∪ {{w,ws} | w ∈ W, s ∈ S}.

Notice that since each s ∈ S is an involution, the we have the equality of the

1-simplices

{ws,wss} = {ws,w} = {w,ws}.

It follows that a pair of vertices in the Cayley graph are contained in most one 1-

simplex. This is contrary to some other standard definitions of the Cayley graph

in which the vertices w and ws would be contained in two distinct edges which

are oriented in different directions.



Chapter 5

Nielsen equivalence in right-angled

Coxeter groups

RACGS ARE A VERY IMPORTANT class of Coxeter groups to study with respect to

Nielsen equivalence. Notwithstanding their centrality in much of geometric group

theory, there are many reasons to suspect that their generating tuples are well-

behaved when it comes to Nielsen equivalence. As Γ varies over finite simplicial

graphs, WΓ interpolates between Z2 ∗ · · · ∗ Z2 when Γ is totally disconnected, and

Z2 × · · · × Z2 when Γ is complete. In both of these cases, all generating tuples

are either reducible, or Nielsen equivalent to the standard one (albeit for quite

different reasons: see Theorem 1.20 and Theorem 1.19 respectively).

As discussed in Section 2.1, since RACGs are even, their algebraic rank equals

their Coxeter rank, so any Coxeter generating tuple is minimal. Additionally they

are rigid (see Definition 2.9) so any two Coxeter systems for the same RACG have

isomorphic diagrams. As a consequence it is not unreasonable to hope that for

many RACGs, all generating tuples are either reducible or Nielsen equivalent to

the standard one.

Our tool for studying RACGs will be certain labelled cube complexes introduced

by Palavi Dani and Ivan Levcovitz in [31]. On the face of it these are quite distinct

from the tool we used in the previous Chapter: the Davis complex. In fact, the

cube complexes we will use to study a RACGWΓ are very closely related to certain

quotients on subsets of the Davis complex ΣΓ. In the first Section we will define

162
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these complexes and summarise the relevant results from [31]

5.1 Cube complexes and completion sequences

The work of Dani and Levcovitz is closely inspired by Stallings’ study of sub-

groups of free groups [105]. In turn, it was generalised to study subgroups of the

fundamental groups of CAT(0) cube complexes in [7]. We begin by recalling the

definition of a cube complex and introducing a class of labelled cube complexes.

For a detailed introduction to the general theory of cube complexes, see [57].

5.1.1 Cube complexes and Γ-labellings

Definition 5.1. A cube complex Ω is a cell complex in which all cells are identi-

fied with Euclidean unit cubes
[
−1

2
, 1
2

]k and attaching maps restrict to Euclidean

isometries on the faces of the cubes.

A mid-cube of a cube c in a cube complex is the result of restricting one of the

coordinates of c to be 0. The cubical subdivision Sub(Ω) of Ω is the cube complex

obtained by subdividing the interiors of each k-cube into 2k cubes by cutting along

all of the mid-cubes.

Figure 5.1: From left to right: a 3-cube, its three mid-cubes, and its cubical subdivision.

Two edges of a cube c are opposite each other if they intersect the same mid-

cube. Consider the equivalence relation on the edges of Ω which is the transitive

closure of the opposite relation. An equivalence class under this relation is called

a wall of Ω, see Figure 5.2 for an example. For a fixed wall w in Ω, the hyperplane

dual to w is the union of all mid-cubes which meet an edge in w. Note that hyper-
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planes in a cube complex Ω can be identified with subcomplexes of Sub(Ω) and

inherit the structure of a cube complex.

Figure 5.2: An example of a cube complex which contains four walls and hence four hy-
perplanes: red, orange, green, and purple. The green hyperplane self-intersects, showing
that edges which are not opposite in a cube may nevertheless be in the same wall in a cube
complex.

We use cube complexes to encode information about a subgroup of a RACG

WΓ with presentation diagram Γ. To this end we label the cube complexes.

Definition 5.2. Let Γ be a finite simplicial graph. A Γ-complex is a cube complex

Ω where each hyperplane is labelled by a vertex of Γ such that, if two hyperplanes

intersect, their labels are distinct and adjacent in Γ.

The type of a k-cube c in a Γ complex is the set of k distinct labels of the hy-

perplanes which intersect it.

Notice that a labelling of the hyperplanes induces a dual labelling on the walls

of Ω, and hence on all of the edges. Thus, the type of a cube c is also the set of its

edge labels.

5.1.2 The complex of groups OΓ

The labelling of a Γ-complex Ω encodes a map π1(Ω) → WΓ. To see this, we first

define a complex of groups OΓ whose fundamental group is WΓ (see [56] for an

account to complexes of groups in general, as well as Remark 4.18). One way to

describe OΓ is to start with the Davis complex Σ of WΓ (recall the construction in

Section 4.1, see Section 1.2 of [32] for a summary of this in the right-angled case).
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Taking the dual cell structure from Theorem 4.14 yields a CAT(0) cube complex

having the Cayley graph of (WΓ, S) as its 1-skeleton.

This cube complex has k-cubes attached equivariantly wherever the 1-skeleton

of a k-cube can be found. These correspond to complete subgraphs with k vertices

in Γ. Taking the cubical subdivision of Σ, WΓ acts by cellular isometries so that

the stabiliser of every cell fixes the cell point-wise. Define OΓ to be the quotient

Sub(Σ)/WΓ. As a cell-complex, Sub(Σ)/WΓ is contractible, so it lifts to a subset of

Sub(Σ). We can label cells in the quotient by the stabilisers of their lifts, giving

the quotient the desired complex of groups structure.

Thought of another way, the quotient Sub(Σ)/WΓ essentially coincides with

the strict fundamental domainK(WΓ, V Γ), just with a different cell structure. Giv-

ing K(WΓ, V Γ) a complex of groups structure according to the mirror structure

and family of groups over V Γ is another way to define OΓ.

Since Σ is CAT(0), it is simply connected, so we can identify the fundamental

group of the complex of groups, π1(OΓ), withWΓ. Notice that, since the 1-skeleton

of Σ is the Cayley graph of (WΓ, S) which comes with a natural labelling by V Γ =

S, Σ is a Γ-complex. This induces a labelling of some edges of OΓ by V Γ.

Now suppose we have a cellular map Sub(Ω)→ OΓ for some Ω. This induces

a map π1(Ω) → WΓ across which we can pull back the labelling on OΓ to a Γ-

labelling on Ω. Since there is exactly one edge of OΓ labelled by each vertex of Γ

(as WΓ acts transitively on edges with the same label in Σ), the Γ-labelling on Ω

completely determines the map Ω→ OΓ, and hence π1(Ω)→ WΓ.

5.1.3 Completion sequences of Γ-complexes

In [31], Dani and Levcovitz consider three operations on Γ-complexes, where the

result of each is a new Γ-complex. They are as follows.

Edge fold If Ω contains two edges e and e′ which have a common end point and

share the same label, then pick orientations for e and e′ such that the common

vertex is the origin vertex. Then the map Ω → OΓ factors through Ω′ = Ω/e ∼

e′, where the edges have been identified by an isometry which matches up the
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orientations. The quotient map Ω→ Ω′ is an edge fold and Ω′ is a Γ-complex with

the labelling induced from Ω.

Compare this to Stallings folds shown in Figure 1.1. Edge folds fall into the same

four types shown in Figure 5.3, the difference is that there are no fixed orientations

on the edges, we are free to pick orientations each time we fold.

(a) (b) (c) (d)

Figure 5.3: The four types of edge folds.

In the present setting, folds of type (a) and (b) are important because they

induce a homotopy equivalence between the complex before and after it is folded.

So, in particular, they always preserve the property that the fundamental group

is free. On the other hand, folds of type (c) and (d) are important because they do

not change the vertex set of the complex being folded, which gives us tight control

on the connection between standard completion sequences (see below), and standard

free completion sequences in Section 5.4.1.

Cube identification IfΩ contains two k-cubes c and c′ (k at least 2) with the same

attaching maps (up to a Euclidean isometry of c′), then the map Ω → OΓ factors

through Ω′ = Ω/c ∼ c′. Here we have identified c and c′ with their images in Ω

(unlike for edges, when k ⩾ 2 there is a unique way to continuously extend the

identifications of the boundary attaching maps of c and c′ to identifications of the

interiors of the cubes). The quotient map Ω→ Ω′ is a cube identification.

Cube attachment If Ω contains a vertex v with k of the edges incident to v la-

belled by distinct vertices of Γ which span a complete subgraph, then attach a

new k-cube c to Ω to construct a new cube complex Ω′ as follows. Give each of

the k edges incident to v an orientation such that v is their origin vertex. Similarly

orient each of the k edges in c which meet (−1/2, . . . ,−1/2). The attachment map

sends the vertex (−1/2, . . . ,−1/2) to v and the k edges incident to that vertex in c
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are identified with the k edges which meet at v such that the orientations match.

Label all the other edges of c in Ω′ by the label of the edge opposite them which is

identified with an edge in Ω. The inclusion map Ω→ Ω′ is a cube attachment.

With these operations in mind we make the following definition.

Definition 5.3. A Γ-complex is folded if it is not possible to perform an edge fold

or cube identification. It is cube full if, wherever a cube attachment is possible,

there is already a cube present. Given a Γ-complex Ω, a completion sequence for

Ω is a possibly infinite sequence of Γ-complexes

Ω = Ω0 → Ω1 → Ω2 → · · · ,

which satisfy the following conditions: consecutive Ωi’s differ by one of the op-

erations defined above and the direct limit of the sequence, Ω̂, is folded and cube

full. In this case, Ω̂ is called a completion of Ω.

5.1.4 Standard completion sequences

Dani and Levcovitz show that a completion always exists by constructing a so-

called standard completion sequence where alternately one performs all possible

folds and identifications, followed by all possible cube attachments. More pre-

cisely, the construction is as follows.

Standard completion sequence: Suppose that some finite portion of a standard

completion sequence of Ω has already been constructed

Ω = Ω0 → Ω1 → · · · → Ωi,

it follows by induction that Ωi is a finite complex. Suppose Ωi is not folded. Be-

cause it is finite, it contains finitely many edges and cubes, so there are a finite

number of folds and cube identifications possible, say j. Performing each of these

in turn, the standard completion sequence extends as

Ωi → Ωi+1 → · · · → Ωi+j,

and Ωi+j is still a finite cube complex.
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On the other hand, if Ωi is a folded complex, then for each vertex v in Ωi attach

all possible maximal cubes in turn which are not already present. SinceΩi is finite,

this involves adding only a finite number of cubes j, so the standard completion

sequence extends as
Ωi → Ωi+1 → · · · → Ωi+j.

Remark 5.4 (Uniqueness of completion sequences). A standard completion sequence

is not unique as the folds, identifications and attachments can be performed in dif-

ferent orders. Additionally, if a fold or attachment involves edge loops (ie edges

which have the same start and end vertex), there may be several essentially dif-

ferent ways of folding or attaching. It is also worth noting that, while the result of

the folding and identifying step of the construction is necessarily a folded com-

plex, after performing all possible cube attachments at vertices of Ωi, the resulting

complex may not be cube full. This is because the newly attached cubes introduce

new vertices where more cubes could be attached, but are not in that step.

PROPOSITION 5.5 (Propositions 3.3 and 3.5 in [31]): The direct limit of the standard

completion sequence is both folded and cube full, and so is a completion. If this completion

is a finite Γ-complex, then the standard completion sequence producing it has finite length.

Completions are useful for studying finitely generated subgroups ofWΓ. Given

a finite tuple X ⊆ WΓ, let ΩX be the Γ-complex constructed as follows. Start with

a wedge of circles indexed by X ,
∨
x∈X S1 and call the common vertex v0, which

we set to be the base-point. For each x ∈ X , choose a (reduced) word t1 · · · tk
representing x and subdivide the corresponding circle into k edges which are la-

belled cyclically by t1, . . . , tk. Now, if Ω̂X is a completion of ΩX , we also call it a

completion of G = 〈X〉. Many algebraic and geometric properties of G ⩽ WΓ can

be easily read off.

5.1.5 Core graphs

It is not the case that ΩX is uniquely determined by 〈X〉, or even by X , however

Dani and Levcovitz define the core graph of Ω̂X , which is uniquely defined.
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Definition 5.6. Let Ω be a Γ-complex with base point v0. The core graph of (Ω, v0),

denotedC(Ω, v0) is the union of all loops based at v0 in Ω (ie paths which start and

end at v0) which are labelled by reduced expressions (see Definition 1.9)in (WΓ, S).

Example 5.7. Consider the RACG with presentation diagram:

s3

s2

s1

s4

Given the pair X = (s2s4s3, s3s4s3), we can form ΩX and compute its comple-

tion.

v0

s3

s4

s2

s1

s4

s1

ΩX

v0s3

s4

s2

s1

s4

s1s3 s2

v0

s4

s4

Ω̂X

Figure 5.4: An example of a completion sequence.

In this particular case, the image of the intermediate graph in the final comple-

tion is the core graphC(Ω̂X , v0). This can be seen by observing that any based loop

which contains any other edge of Ω̂X must contain a sub-path in the 1-skeleton of

the 3-cube which traverses two edges which are opposite. Then one can check

that the label of such a sub-path can be reduced using Corollary 1.12.

To state the uniqueness of core graphs, we need the following definition which

generalises the construction of Ω̂X .

Definition 5.8 (Definition 4.3 in [31]). Let Ω be a connected Γ-complex with base

point v0, and let F(y1, . . . , yn) be the fundamental group of the 1-skeleton of Ω,
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where each yi is a loop inΩ based at v0. Consider the mapF(y1, . . . , yn)→ WΓ : yi 7→

xi, where xi is the element represented by the word which labels yi. Then we call

the group 〈x1, . . . , xn〉 the subgroup of WΓ associated to Ω. In particular, if the

map F(y1, . . . , yn)→ WΓ is surjective, then Ω represents WΓ. We say that, if Ω is a

completion with associated subgroup G, then Ω is a completion of G.

The subgroup ofWΓ associated to a Γ-complex is preserved by taking comple-

tion sequences. Thus the subgroup associated to Ω̂X is 〈X〉. The core graphs of

completions have the following property, which follows from Lemma 4.2 of [31].

PROPOSITION 5.9: Let Ω̂ be a completion with base point v0, and G the subgroup of WΓ

associated to (Ω̂, v0). If w ∈ G and t1 · · · tk is a reduced word representing w, then there

is a based loop in C(Ω̂, v0) labelled t1 · · · tk.

The uniqueness of core graphs of completions can now be stated as follows.

THEOREM 5.10 (Proposition 5.3 in [31]): Let (Ω, v0) and (Ω′, v′0) be two based comple-

tions with the same associated subgroup, then there is a based isomorphism C(Ω, v0) →

C(Ω′, v′0).

5.1.6 Finite completions and quasiconvexity

In the rest of this Chapter, we are most interested in finite completions. Dani and

Levcovitz prove an equivalence between the existence of a finite completion and

the associated subgroup being quasiconvex in WΓ. Recall the Davis complex ΣΓ of

WΓ. In particular, its dual CW structure contains the Cayley graph of WΓ as its

1-skeleton by Theorem 4.14, and so we can view G ⊂ WΓ as a subset of ΣΓ.

Definition 5.11. Let WΓ be a RACG, and G a subgroup. G is quasiconvex in WΓ

if there exists some M > 0 such that any geodesic in the Davis complex of WΓ,

whose endpoints lie in G, lies wholly in an M -neighbourhood of G.

For more information of quasiconvexity in general, consult Definition III.Γ.3.4

in [14].

THEOREM 5.12 (Theorem 8.4 in [31]): Let G be a subgroup of WΓ, then the following

are equivalent:
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1. G is quasiconvex

2. Some completion for G is finite

3. Every standard completion for G is finite

In the remainder of this Chapter, we cast our net somewhat wider than just

Nielsen equivalence in RACGs and consider all quasiconvex subgroups of RACGs.

The reason is that their finite completion sequences ensure that algorithmic pro-

cesses discussed below terminate.

Assumption 5.13. For the remainder of this Chapter, fix a finite simple graph Γ,

and we work in the category of Γ-complexes, ie all spaces are cube complexes

with a Γ-labelling, and all maps between these spaces are combinatorial maps of

the underlying cube complexes which preserve the Γ-labelling.

Compare completion sequences with the topological approach to Nielsen equiv-

alence discussed in Section 1.2.2. When studying Coxeter groups, it makes sense

to letO be a complex of groups whose complex of groups fundamental group is the

corresponding Coxeter group. The roles of cellular maps and the notion of local

injectivity have to be modified slightly to work in this setting. The connection to

completion sequences should be clear, except instead of trying to build a folded

and cube full complex, we need to stay in the category of cube complexes with

free fundamental group. Notice that because the standard generators of a Cox-

eter group are involutions, when using the pulled back the labelling of O, we do

not need to fix and pull back an orientation on the edges, whence the definition

of Γ-complexes above.

5.2 Generating tuples of quasiconvex subgroups of

RACGs

As when looking at reflection generating tuples, it is useful to have a way to tell

whether a finite tuple of elements of WΓ generates a given quasiconvex subgroup

G. Fortunately completion sequences give us an easy way to do this.
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THEOREM 5.14: (Follows from Theorem 13.1 in [31]) Let (W,S) be a RACG, and G a

quasiconvex subgroup given by a finite tuple of generators Y . Then given a finite tuple of

elements X from W , there is an algorithm which terminates if 〈X〉 is quasiconvex and in

this case outputs whether X generates G.

Proof. Consider the complexes (ΩY , v0) and (ΩX , v1), the based Γ-labelled graphs

representing Y and X respectively which are defined on page 168. Let (Ω̂Y , v0)

and (Ω̂X , v1) be standard completions of ΩY and ΩX (where the images of v0 and

v1 in the completions are again denoted by v0 and v1 respectively). SinceG is quasi-

convex, by Proposition 5.5 and Theorem 5.12, (Ω̂Y , v0) can be computed in finitely

many steps. If X generates a quasiconvex subgroup, then Ω̂X is also computable

in finitely many steps.

Assume that 〈X〉 is quasiconvex. One can solve the membership problem in

G or 〈X〉 using their completions, see Theorem 13.1 in [31]. In particular, suppose

w is a word over S and we wish to test whether w represents an element of G.

After applying Theorem 1.11 or Corollary 1.12 we can assume that w is a reduced

word. If w represents an element of G, then Proposition 5.9 implies there is a

based loop in C(Ω̂Y , v0) ⊂ (Ω̂Y , v0) labelled by w. Conversely, if w represents an

element which does not lie in G, then no based loop in (Ω̂Y , v0) is labelled by

w. This is because no based loop in (ΩY , v0) is labelled by a word representing

the same element as w, and the subgroup associated to a Γ-complex is preserved

under taking completion sequences, see Definition 5.8.

To check whether 〈X〉 = G it suffices to check the membership problem for

the elements of Y in 〈X〉, and for the elements of X in G.

Remark 5.15 (Decidability). IfX generates a quasiconvex subgroup then this algo-

rithm terminates and gives a negative answer, however if this is not the case, then

it never terminates. One might hope that there is some other procedure which

takesX as input and terminates if 〈X〉 is not quasiconvex. However, it seems very

unlikely that this problem is decidable—for example it is undecidable for hyper-

bolic group, see [15].

In Section 5.5.3 we briefly discuss an implementation of this algorithm in Math-
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ematica. This has allowed us to compute many examples of generating tuples of

RACGs and use these to explore Nielsen equivalence.

5.3 Free completion sequences

We can also use completion sequences to study Nielsen equivalence directly as

long as we impose the restriction that any folds result in a complex with free fun-

damental group (cube identifications and attachments automatically preserve the

property of having a free fundamental group). Such a free completion sequence

exactly models the diagram shown in (1.2) on page 62, where the maps gi toO are

encoded by the Γ-labelling on the complexes in the sequence.

5.3.1 Free folds and attachments

Definition 5.16. A Γ-complex Ω is free if π1(Ω) is free. Call a sequence of free Γ-

labelled complexes (Ωi)i where consecutive complexes differ by a fold, cube iden-

tification, or cube attachment a free completion sequence.

In a free completion sequence, cube identifications can always be performed

without changing the fundamental group, but we need slightly modified versions

of edge folds and cube attachments.

Free edge fold A free edge fold of a free Γ-complex is any fold which results in

a free Γ-complex.

Free cube attachment A free cube attachment to a free Γ-complex is a cube at-

tachment Ω→ Ω′ such that there is no sequence of folds which can be applied to

Ω′, after which the newly attached cube shares a vertex with another cube of the

same type (see Definition 5.2).

Definition 5.17. Let Ω be a free Γ-complex. It is freely folded if no cube identifi-

cations or free edge folds are possible; it is freely cube full if there are no possible

free cube attachments; and it is a free completion if it is freely folded and freely

cube full.
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5.3.2 Characterising free cube attachments

Checking whether a cube attachment to a cube complex is a free cube attachment

appears difficult in general as one must consider all possible sequences of folds.

It turns out however that it is possible to get away with checking just a single

sequence of folds.

PROPOSITION 5.18: LetΩ be a free cube complex, andΩ→ Ω̃ a cube attachment. Suppose

Ω̃1 is a complex obtained from Ω̃ by some sequence of (not necessarily free) folds such that

it is not possible to fold Ω̃1 further. If the cube newly attached in Ω̃ does not share a vertex

with any other cubes in Ω̃1 of the same type, then Ω→ Ω̃ is a free cube attachment.

The following Lemma is useful in proving the Proposition, and can be thought

of a generalisation of the comment at the end of Section 3.3 in [105].

LEMMA 5.19: Let Ω be a finite Γ-labelled graph, and let

Ω = Ω1
0

f10−→ Ω1
1

f11−→ · · ·
f1l1−1−→ Ω1

l1
= Ω1

Ω = Ω2
0

f20−→ Ω2
1

f21−→ · · ·
f2l2−1−→ Ω2

l2
= Ω2

be two sequences of folds such that Ω1 and Ω2 cannot be folded further. Write f 1 : Ω→ Ω1

and f 2 : Ω→ Ω2 for the corresponding maps. Then there is an isomorphism g : Ω1 → Ω2

such that the following diagrams commute

V Ω

V Ω1 V Ω2

f 2
Vf 1

V

gV

EΩ

EΩ1 EΩ2

f 2
Ef 1

E

gE

where fV and fE denote the maps induced on the sets of vertices and edges respectively by

some map of graphs f .

Proof. Define an equivalence relation on V Ω by saying v1 ∼ v2 if f 1
V (v1) = f 1

V (v2),

and similarly define an equivalence relation on EΩ by saying e1 ∼ e2 if f 1
E(e1) =

f 1
E(e2). Fix a choice of equivalence class representatives for the vertices and edges
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of Ω. For a vertex v̄ ∈ V Ω1 let v be its representative in V Ω and define g : Ω1 → Ω2

on v to be g(v̄) = f 2(v). For an edge ē ∈ EΩ1, let e be the representative of the

class of edges which are mapped to ē by f 1
E . For a point x̄ in the interior of ē, let

g(x̄) = f 2(x), where x is the point in the preimage of x̄ under the map f 1 which

lies in e. To show that g is well-defined and satisfies the conclusion of the Lemma,

we prove the following claim.

Claim: a pair of edges or vertices in Ω are identified in Ω1 if and only if they are

identified in Ω2. To simplify notation, we refer to the images of any edge e or

vertex v from Ω in any graph obtained by a sequence of folds by e or v respectively

as well. We prove the claim by induction on the number of terms in the folding

sequence which produces Ω1 before it becomes possible to identify a given pair of

edges or vertices.

Suppose that in Ω it is possible to fold two distinct edges e1 and e2, ie these

edges carry the same label and share an endpoint. Then if f 2
0 does not fold these

edges together, they can still be folded in Ω2
1. This is because the fold f 2

0 does not

change the edge labels, and cannot separate edges which already meet. It follows

by induction that for each j ⩾ 0, inΩ2
j either e1 and e2 have already been identified,

or it is still possible to fold them together. In particular, since no folds are possible

in Ω2, f 2
E(e1) = f 2

E(e2). It follows that if v1 and v2 are two distinct vertices in Ω

which can be identified by a single fold, then either for each j ⩾ 0, in Ω2
j either

v1 and v2 have already been identified, or it is still possible to identify them by a

single fold.

Now consider two vertices v1 6= v2 ∈ V Ω which are identified by f 1, and let

j be minimal such that it is possible to identify v1 and v2 in Ω1
j by a single fold.

Then there are edges e1 and e2 which have v1 and v2 as one of their endpoints

respectively, which can be folded in Ω1
j , but are disjoint in Ω1

j−1. Therefore, f 1
j−1

folds a pair of edges e′1 and e′2, this identifies a pair of distinct vertices v′1 and v′2

which are endpoints of e1 and e2. An example of such a fold is shown in Figure 5.5.

By induction on j we can assume that there is some k such that each pair of

distinct edges and vertices in Ω which are identified in Ω1
j have already been iden-
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v′1 v′2

v1 v2

e′1 e′2

e1 e2

v′1 = v′2

v1 v2

e′1 = e′2

e1 e2

Figure 5.5: An example of the fold f1
j−1.

tified in Ω2
k. In particular v′i either started off as, or has already been identified

with, one of the endpoints of ei and e′i for i = 1, 2; vi either started off as, or has

already been identified with, one of the endpoints of ei for i = 1, 2; and v′1 has been

identified with v′2. Thus, in Ω2
k, either e1 and e2 have already been folded together,

or it is possible to fold them in Ω2
k. Either way, they must be identified in Ω2. It

follows from this, and the fact that the only ambiguity in how e1 and e2 are folded

arises when one of them is an edge loop, that v1 and v2 must either have already

been identified, or it is possible to identify them in Ω2
k by a single fold; and so they

must be identified in Ω2.

We have shown that any pair of edges or vertices which are identified by f 1

must also be identified by f 2. Repeating the same argument with the roles of Ω1

and Ω2 reversed we see that a pair of edges or vertices in Ω are identified in Ω1 if

and only if they are identified in Ω2, completing the proof of the claim.

To see that g is well-defined, fix an orientation on the edges of Ω1, which we

can then pull back to an orientation on the edges of Ω by f 1. Let ē be an edge of

Ω1 and let v̄ = ιē be its initial vertex. Then the the initial vertex of e, v′, is mapped

to v̄ by f 1 (since folds are simplicial maps), ie v′ ∼ v. Then

g(ιē) = g(v̄) := f 2(v) = f 2(v′) = ιf 2(e) =: ιg(ē),

where the central equality follows from the proof above. Reversing the orienta-

tion on all of the edges of Ω1 and applying the same argument shows that g is a

well-defined simplicial map. Swapping Ω1 and Ω2 in the definition of g yields a

simplicial map Ω2 → Ω1 which is the inverse of g, since the equivalence classes

of edges and vertices in Ω coming from f 2 are the same as those coming from f 1.

Therefore g is a graph isomorphism. That the two diagrams in the statement of

the Lemma commute follows directly from the definition of g.
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In general it is not true that the map g itself commutes with f 1 and f 2 because

these maps may fold an edge along an edge loop at some stage in different orien-

tations.

Proof of Proposition 5.18. We show that ifΩ→ Ω̃ is not a free cube attachment, then

this is witnessed by any choice of Ω̃1. Let Ω̃ → Ω̃1 → · · · → Ω̃k be a sequence of

folds such that the cube c attached in Ω→ Ω̃ shares a vertex with another cube c′

of the same type. Continue this sequence of folds Ω̃k → · · · → Ω̃l =: Ω̃
2 until no

more folds are possible.

In general Ω̃1 and Ω̃2 are different complexes, however by Lemma 5.19 there

is an isomorphism g between their 1-skeleta which commutes with the maps in-

duced on their sets of vertices and edges by f 1 : : Ω̃ → Ω̃1 and f 2 : Ω̃ → Ω̃2. Let

v be a vertex of c and v′ a vertex of c′ in Ω̃ which get identified in Ω̃k, then these

vertices get identified by f 2, and so by f 1 as well. In other words, c and c′ share a

vertex in Ω̃1 showing that Ω→ Ω̃ is not a free cube attachment.

5.3.3 Free cube attachments in freely folded complexes

LEMMA 5.20: Let Ω be a freely folded cube complex, and let Ω be a folded cube complex

obtained by performing all possible folds and cube identifications. Then the map Ω → Ω

is the identity map when restricted to the vertex set of Ω.

Proof. Cube identifications do not change the vertex set so the only way this Lemma

could fail is if some fold identifies two vertices. There are essentially four types

of fold shown in Figure 5.3. Types (a) and (b) change the vertex set, but are also

homotopy equivalences, and so are always free folds when performed on free

complexes. On the other hand (c) and (d) leave the vertex set unchanged, but may

fail to be free folds.

We claim that no folds of type (a) or (b) are applied in Ω → Ω. Indeed, since

Ω is freely folded, no (a) or (b) folds are possible to begin with. Writing out the

sequence of folds and identifications explicitly

Ω = Ω0 → Ω1 → · · · → Ω,
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if such a fold becomes possible subsequently, let Ωi be the first complex where this

happens. Then the map Ωi−1 → Ωi must change the 1-skeleton of Ωi−1 which rules

out it being a cube identification. In fact the two edges involved in the type (a) or

(b) fold must have a common endpoint in Ωi, but since the fold is not possible

in Ωi−1 they cannot have a common endpoint before this point. In other words

Ωi−1 → Ωi changes the vertex set of Ωi−1, and hence must be a fold of type (a) or

(b) itself. But this contradicts the minimality of i.

It follows immediately from this Lemma that in the case of freely folded com-

plex, detecting whether a cube attachment is free is even simpler than Proposi-

tion 5.18.

PROPOSITION 5.21: Let Ω be a freely folded cube complex, and Ω→ Ω̃ a cube attachment

at some vertex v. This cube attachment is free if and only if there is not another cube in Ω

with the same type as the attached cube which has v as a vertex.

5.4 Standard free completion sequences

As with normal completion sequences, we can define a standard free completion

sequence to be a free completion sequence where, roughly speaking, we alter-

nately perform all possible cube identifications and free edge folds, followed by

all possible free cube attachments. In this Section we rigorously define these se-

quences and characterise when they are finite.

Standard free completion sequence: Suppose that some finite portion of a stan-

dard free completion sequence of Ω has already been constructed

Ω = Ω0 → Ω1 → · · · → Ωi,

it follows by induction that Ωi is a finite complex. Suppose Ωi is not freely folded.

Because it is finite, it contains finitely many edges and cubes. Let j the the finite

number of free folds and cube identifications possible. Performing each of these

in turn, the standard free completion sequence extends

Ωi → Ωi+1 → · · · → Ωi+j,
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and Ωi+j is still a finite cube complex.

On the other hand, if Ωi is a freely folded complex, then for each vertex v in

Ωi perform all possible free cube attachments at v. Since Ωi is finite this involves

adding only a finite number of cubes j, so the standard free completion sequence

extends
Ωi → Ωi+1 → · · · → Ωi+j.

Remark 5.22 (Uniqueness of standard free completion sequences). As with stan-

dard completion sequences, a standard free completion sequence is not unique.

Here we are only concerned with finite free completion sequences, so there is no

need to work with direct limits of complexes.

5.4.1 Finite standard free completion sequences

The somewhat convoluted definition of freely cube full is required because other-

wise standard free completion sequences are always infinite except in a few trivial

cases. With this definition we want to prove the following.

THEOREM 5.23: Let Ω be a finite connected free Γ-complex. Then any standard free com-

pletion sequence of Ω is finite if and only if Ω has a finite completion sequence.

Recall that by Theorem 5.12, Ω has a finite completion sequence if and only its

associated subgroup is quasiconvex in WΓ.

We prove the two directions of this Theorem separately, but the method of

proof follows the same idea in each case. For the only if direction we prove the

contrapositive, so assume that every completion sequence of Ω is infinite. Taking

an infinite standard completion sequence we construct a standard free completion

sequence in parallel by performing the same sequence of folds, identifications,

and attachments, but skipping those folds and attachments which are not free.

Since the standard completion sequence is infinite, the standard free completion

sequence we build in this way is also infinite.

To prove the if direction, we start with the assumption that Ω has a finite com-

pletion, which implies that every standard completion is finite. Then we take a

standard free completion sequence and construct a standard completion sequence



180 STANDARD FREE COMPLETION SEQUENCES

in parallel by performing the same sequence of free folds, identifications, and free

cube attachments, and periodically adding in any extra non-free folds which can

be performed. Lemma 5.20 guarantees that these extra folds do not make the two

parallel completion sequences differ too much from each other, and its conse-

quent, Proposition 5.21, ensures that all possible cube attachments in the comple-

tion sequence actually arise as a result of free cube attachments in the free comple-

tion sequence. Since the standard completion sequence we construct in this way

must by finite by assumption, the standard free completion sequence we started

with (which was arbitrary) must also have been finite.

PROPOSITION 5.24: Let Ω be a finite connected free Γ-complex. If every completion se-

quence of Ω is infinite then Ω has an infinite standard free completion sequence.

Proof. Let

Ω = Ω0
f0−→ Ω1

f1−→ Ω2
f2−→ · · · (5.1)

be an infinite standard completion sequence. We construct a new sequence based

on this

Ω = Ω′
0

f ′0−→ Ω′
1

f ′1−→ Ω′
2

f ′2−→ · · · (5.2)

where each map is a (composition of) free fold(s) and/or identifications; a free

cube attachment; or the identity. Roughly speaking, Ω′
i → Ω′

i+1 agrees with Ωi →

Ωi+1 in the sense that it folds the ‘same’ pair of edges, identifies the ‘same’ pair of

cubes, or attaches the same type of cube at the ‘same’ vertex so long as Ωi → Ωi+1

is a free fold, a free cube attachment, or a cube identification; and otherwise Ω′
i →

Ω′
i+1 is the identity.

It is not clear that this sequence is well-defined, and in fact it is not well-defined

in general using the naïve construction outlined above (in particular, cube identi-

fications in (5.1) are not necessarily be possible in (5.2)). Nevertheless, a rigorous

construction based on this idea yields a sequence (5.2) from with we can straight-

forwardly derive an infinite standard free completion of Ω, as required.

Suppose that we have already constructed

Ω = Ω′
0

f ′0−→ Ω′
1

f ′1−→ · · ·
f ′k−1−→ Ω′

k
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for some k ⩾ 0, together with maps gi : Ω′
i → Ωi for each 0 ⩽ i ⩽ k such that g0 is

the identity, and the following diagram commutes:

Ω′
0 Ω′

1 · · · Ω′
k

Ω0 Ω1 · · · Ωk Ωk+1 · · ·f0 f1 fk−1 fk fk+1

f ′0 f ′1 f ′k−1

g0 g1 gk

We see by induction that gi is surjective, and giV is a bijection for each 0 ⩽ i ⩽ k,

where (borrowing notation from Lemma 5.19) giV is the restriction of gi to the

vertex set of Ω′
i. We now define Ω′

k

f ′k−→ Ω′
k+1

gk+1−→ Ωk+1 depending on the type of

operation performed by fk.

fk folds edges e1 and e2 Let v be a vertex common to e1 and e2 in Ωk, and let

v′ = g−1
kV (v). Since gk is surjective, there must be non-empty sets edges g−1

kE(e1) =

{e′11, . . . , e′1m1
} and g−1

kE(e2) = {e′21, . . . , e′2m2
} in Ω′

k, all of which have the same label

as e1 and e2, and which are incident to v′. Hence all the e′ij’s may be folded in Ω′
k.

If it is not possible to fold any pair of edges in g−1
kE(e1)∪g

−1
kE(e2) freely then none

of these folds change the vertex set of Ω′
k. Let Ω′

k+1 = Ω′
k and f ′

k be the identity

map, then we can take gk+1 = fk ◦ gk. It follows that gk+1 is a surjection which

leaves the vertex set unchanged, so gk+1 inherits these properties.

Otherwise, fix an orientation on the edge e := fk(e1) = fk(e2) and pull this back

under fk◦gk to an orientation on each edge in g−1
kE(e1)∪g

−1
kE(e2). Let Ω′

k

f ′k−→ Ω′
k+1 be

a maximal composition of free folds of pairs of edges in g−1
kE(e1)∪ g

−1
kE(e2), (if there

is ambiguity about how to perform a given fold because the fold is of type (b) or

(d) in Figure 5.3, then the fold should be performed to match the orientations of

the edges involved).

Let gk+1 be fk ◦ gk away from the images of the edges in g−1
kE(e1)∪ g

−1
kE(e2), since

f ′
k+1 does not change Ω′

k − (g−1
kE(e1) ∪ g

−1
kE(e2)). On the edges in g−1

kE(e1) ∪ g
−1
kE(e2),

let gk+1 map them all onto the edge e ∈ Ωk+1 in such a way that the orientations

are preserved. This is surjective, and leaves the vertex set unchanged.
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fk identifies cubes c1 and c2 Let d be the dimension of the cubes c1 and c2, which

have the same attaching maps in Ωk, and so, in particular, share the same set of

vertices. Consider the set C of all d-cubes in Ω′
k which map onto c1 or c2 (as above

for folds, there is at least one cube mapping onto each). Exhaustively identify

all pairs of facets of cubes in C which can be identified (in particular these facets

should have dimension ⩾ 2), and call f ′
k the composition of all of these identifica-

tions. If no identifications are possible then f ′
k is the identity.

Define gk+1 to agree with gk on all cubes which do not lie in the image of C in

Ω′
k+1. All the cubes in C get mapped to a single cube c in Ωk+1, so define gk+1 to

map all cubes in the image ofC onto c. Then gk+1 is surjective and gk+1◦f ′
k = fk◦gk.

Cube identifications do not change the vertex set of the complexes, and gk+1 agrees

with gk on the vertex set.

Before considering the final case, we define a subsequence of (5.1) which cap-

tures the coarse, alternating structure of the standard completion sequence. De-

fine the subsequence

Ω0 → Ωp1 → Ωq1 → Ωp2 → · · · → Ωpj → Ωqj → · · · (5.3)

where Ωpj is the first term in Ωqj−1
→ Ωqj−1+1 → · · · (or in (5.1) if j = 1) which is

folded; while Ωqj is the first term, after Ωpj such that every cube attachment which

is possible in Ωpj has been performed. It is possible that pj = qj−1, which happens

if after adding cubes no new folds are possible; in this case Ωqj−1
→ Ωpj is the

identity.

fk attaches a cube c at v Note that by the definition of a standard completion,

which cubes are attached during a particular cycle of cube attachments is deter-

mined by which attachments are possible in a folded complex, so a cube attachment

is completely determined by the vertex of attachment, and the type (ie label set)

of cube which is being attached.

If k = pj for some j then we first modify Ω′
k−1

f ′k−1−→ Ω′
k

gk−→ Ωk, which has

already been defined, before we define Ω′
k

f ′k−→ Ω′
k+1

gk+1−→ Ωk+1. If Ω′
k is freely
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folded then we do not need to do anything. Otherwise there are some free folds

and/or cube identifications possible in Ω′
k. For possible free folds, the edges must

be folded by gk since Ωk is folded, and moreover they must be folds of type (c)

or (d) in Figure 5.3, because gkV is a bijection. Update fk−1 by composing it with

these free folds and cube identifications. Since gk factors through this sequence it

can also be updated appropriately. It is still surjective and induces a bijection on

the set of vertices.

Now moving on to fk, it is also possible to attach a cube c′ of the same type to

Ω′
k at the vertex v′ = g−1

kV (v). This attachment must also have been possible in Ω′
pj

,

but as this complex is not necessarily folded, there may be several edges which

meet v′ which have the same label. Let f ′
k+1 be the composition of all possible

attachments of c′ at v′. Because c may be attached to Ωpj which is folded, there is

no other cube at v inΩk of the same type. As gk does not identify any other vertices

with v′, it follows that there is no cube with the same labels as c′ which meets v′,

so these cube attachments are each free.

The cube attachment does not change the rest of Ω′
k, so we can define gk+1 to

equal fk ◦ gk on the image of Ω′
k in Ω′

k+1, and to send c′ to c. This is surjective, and

gk+1V is a bijection.

By induction we can produce the infinite sequence (5.2), we want to extract an

infinite standard free completion sequence from this. Define

Ω′
0 → Ω′

p1
→ Ω′

q1
→ Ω′

p2
→ · · · → Ω′

pj
→ Ω′

qj
→ · · · (5.4)

to be the subsequence parallel to (5.3) in (5.2). We claim that this sequence has the

following properties:

1. Each Ω′
pj
→ Ω′

qj
is a composition of a non-empty finite sequence of free cube

attachments,

2. Each Ω′
qj
→ Ω′

pj+1
(and Ω′

0 → Ω′
p1

) is a composition of a (possibly empty)

finite sequence of free folds and cube identifications,

3. Every free cube attachment which can be performed onΩ′
pj

has been applied
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to produce, and Ω′
qj

4. Each Ω′
pj

is freely folded.

By the definition of a standard completion sequence, properties (1) and (2)

hold for (5.3). When (5.2) was defined, each map in (5.3) was replaced with either

a map of the same type, or the identity. Since each Ωpj is folded, any cube attach-

ment which is possible is in fact a free cube attachment. Because gpj is aΓ-labelling

preserving map, every cube attachment possible inΩpj has a corresponding possi-

ble cube attachment inΩ′
pj

which is free. Thus every cube attachment inΩpj → Ωqj

yields a corresponding cube attachment in Ω′
pj
→ Ω′

qj
. Since Ωpj → Ωqj must in-

volve at least one cube attachment (otherwise Ωpj is folded and cube full, contra-

dicting the assumption that (5.1) is an infinite completion sequence), Ω′
pj
→ Ω′

qj
is

a non-empty composition of cube attachments. Thus properties (1) and (2) hold.

Every cube attachment which is possible in Ω′
pj

projects to a possible cube at-

tachment in Ωpj since gpjV is a bijection. When we defined (5.2) we performed

all possible free cube attachments which project to a cube attachment in Ωpj , so

property (3) holds.

Finally, property (4) is guaranteed by the modification we sometimes make at

the start of a round of free cube attachments to the free folding sequence in the

definition of (5.2).

The final step in proving the Proposition is to expand (5.4) out into a standard

free completion of Ω = Ω′
0. To do this, replace each map Ω′

pj
→ Ω′

qj
with a se-

quence of single free cube attachments, and either delete Ω′
qj
→ Ω′

pj+1
if it is the

identity, or else replace it with a sequence of single free folds and identifications.

By properties (3) and (4) this is a standard free completion sequence since alter-

nately all possible free folds and identifications, and then all possible free cube

attachments which are possible in a freely folded complex are made. Since each

of the infinitely many maps Ω′
pj
→ Ω′

qj
are replaced with at least one cube attach-

ment, this standard free completion sequence is infinite in length.

PROPOSITION 5.25: LetΩ be a finite connected freeΓ-complex. IfΩ has a finite completion

sequence then every standard free completion sequence of Ω is finite.
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Proof. Assume that Ω has a finite completion sequence. Then by Theorem 5.12

every standard completion sequence of Ω is finite. We start with a standard free

completion sequence of Ω

Ω = Ω′
0

f ′0−→ Ω′
1

f ′1−→ Ω′
2

f ′2−→ · · · (5.5)

and we construct a new sequence based on this

Ω = Ω0
f0−→ Ω1

f1−→ Ω2
f2−→ · · · (5.6)

where each map is a (composition of) fold(s) and/or identifications, a cube attach-

ment, or the identity. This follows a complementary process to the proof of Propo-

sition 5.24, and as such, we also produce a sequence of functions gk : Ω′
k → Ωk

which commute with the fk’s and f ′
k’s, are surjective, and such that the induced

map gkV is a bijection. Define g0 to be the identity, and then by induction assume

that we have constructed

Ω′
0 Ω′

1 · · · Ω′
k Ω′

k+1 · · ·

Ω0 Ω1 · · · Ωk
f0 f1 fk−1

f ′k f ′k+1f ′0 f ′1 f ′k−1

g0 g1 gk

and we define Ωk
fk−→ Ωk+1

gk+1←− Ω′
k+1 depending on the map f ′

k.

f ′
k is a freely folds edges e′1 and e′2 If gk folds these edges then let fk be the iden-

tity, and gk must factor through f ′
k so we can find a map gk+1 : Ω

′
k+1 → Ωk+1 = Ωk

making the diagram commute. Since gkV is a bijection, the fold does not identify

any distinct vertices and so gk+1 is a surjection which induces a bijection on the

vertex set.

Otherwise e1 = gk(e
′
1) and e2 = gk(e

′
2) are distinct edges inΩk, but they have the

same label, and share an endpoint, and so can be folded. Choose orientations on e′1
and e′2 which match up with how they are folded, then these orientations induce

orientations on e1 and e2 via gk. Let fk fold these edges so that the orientations
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are matched up. Let gk+1 agree with gk away from e′ = f ′
k(e

′
1) = f ′

k(e
′
2), and map

e′ 7→ fk(e1). This map commutes and has the required properties.

f ′
k identifies cubes c′1 and c′2 If gk identifies these cube then let fk be the identity,

and gk must factor through f ′
k so we can find a map gk+1 : Ω′

k+1 → Ωk+1 = Ωk

making the diagram commute. Since cube identifications do not affect the vertex

set, gk+1 is a surjection which induces a bijection on the vertex set.

Otherwise gk(c′1) and gk(c
′
2) are distinct cubes in Ωk, but they have the same

type and attaching maps up to an isometry; hence, the can be identified. Let fk
identify these cubes. Let gk+1 agree with gk away from c′ = f ′

k(c
′
1) = f ′

k(c
′
2), and

map c′ 7→ fk(gk(c
′
1)). This map commutes and has the required properties.

Before considering the final case, we define a subsequence of (5.5) in the same

spirit as (5.3). Define the subsequence

Ω′
0 → Ω′

p1
→ Ω′

q1
→ Ω′

p2
→ · · · → Ω′

pj
→ Ω′

qj
→ · · · (5.7)

where Ω′
pj

is the first term in Ω′
qj−1
→ Ω′

qj−1+1 → · · · (or in (5.5) if j = 1) which is

freely folded; while Ω′
qj

is the first term after Ω′
pj

such that every free cube attach-

ment which is possible in Ω′
pj

has been performed. It may that pj = qj−1, which

happens if after freely adding cubes no new free folds are possible; in this case

Ω′
qj−1
→ Ω′

pj
is the identity.

f ′
k freely attaches a cube c′ at v′ to edges set e′1, . . . , e′d If k = pj for some j, then

our first job is to possibly modify Ωk−1
fk−1−→ Ωk

gk←− Ω′
k. If Ωk is folded then nothing

needs to be done. Otherwise Ωk is freely folded, but not folded. Replace fk−1 with

f ◦ fk−1 where f performs all possible folds and cube identifications, and replace

gk with f ◦ gk. Now Ωk is folded, gk is still surjective, and by Lemma 5.20 gkV is a

bijection.

Now we define Ωk
fk−→ Ωk+1

gk+1←− Ω′
k+1. Since Ωk is folded and gk is surjective,

there exists a unique edge ei incident to v = gk(v
′) which carries the same label

as e′i for 1 ⩽ i ⩽ d. Since it is possible to freely attach c′ at v′, it follows from
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Proposition 5.21 that Ω′
k contains no cubes with the same label as c′ which have v′

as a vertex. Because gk is surjective, Ωk also contains no cube of the same type as

c′ with v as a vertex. Thus, it is possible to attach a cube c of the same type as c′ to

Ω′
k at v.

Consider the orientations on the edges {e′i} used to attach c′, these induce ori-

entations on the edges {ei} via gk. Let fk be the cube attachment of c to v according

to these orientations on {ei}. Let gk+1 agree with gk away from c′, and map c′ to c;

this gives gk+1 the required properties.

Now that we have constructed the sequence (5.6), define the subsequence

Ω0 → Ωp1 → Ωq1 → Ωp2 → · · · → Ωpj → Ωqj → · · · (5.8)

which runs parallel to (5.7). We show that this sequence enjoys the following

properties:

1. Each Ωpj → Ωqj is a composition of a non-empty finite sequence of cube

attachments,

2. Each Ωqj → Ωpj+1
(and Ω0 → Ωp1) is a composition of a (possibly empty)

finite sequence of folds and cube identifications,

3. Each Ωpj is folded, and

4. Every cube attachment which can be performed on Ωpj has been applied to

produce Ωqj .

Properties (1) and (2) are inherited directly from (5.7). The reason Ωpj → Ωqj

is not the identity is that if Ω′
pj
→ Ω′

qj
contained no cube attachments, Ω′

pj
is freely

folded and freely cube full, and so (5.5) terminates at Ωpj . Property (3) is guaran-

teed by the modification made to fpj−1 before performing any cube attachments

to Ωpj .

Finally, suppose it is possible to attach a cube c at some vertex v in Ωpj , then

since Ωpj is folded there is a unique set of edges at which c map be attached.

Choose a lift of this set of edges to a set of edges in Ω′
pj

which meet v′ = g−1
pjV

(v).

We claim it is possible to freely attach a cube c′ of the same type as c to v′ to this
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set of edges. Indeed, Ω′
pj

is freely folded, so by Proposition 5.21 it suffices to show

that there is not already a cube of the same type in Ω′
p)j which meets v′. Recalling

that the gk’s commute with the f ′
k’s and fk’s, there are two possibilities. Either

such a cube originated in Ω, in which case its image in Ωpj would have to meet v.

Alternatively the map f ′
k which attaches this cube is paralleled by a map fk which

attaches a cube of the same type, and whose image in Ωpj again meets v. In either

case, we obtain a contradiction to the hypothesis.

Thus it is possible to freely attach c′ toΩ′
pj

at v′, so by the definition of a standard

free completion sequence, there is some pj ⩽ m < qj such that f ′
m attaches this

cube. It follows that fm attached c at v, which established property (4).

Finally, we want to expand out (5.8) into a completion sequence for Ω. Fac-

torise each Ωpj → Ωqj into a finite sequence of cube attachments, and for each

Ωqj → Ωpj+1
(and Ω0 → Ωp1), if it is the identity, delete it, and otherwise factorise

it into a finite sequence of folds and identifications. Properties (3) and (4) guaran-

tee that this completion sequence is in fact a standard completion sequence. But

recall that the hypothesis that Ω has a finite completion implies that every stan-

dard completion sequence is itself finite. Thus (5.8) must terminate, and so the

standard free completion sequence (5.5) is finite.

Taken together Proposition 5.24 and Proposition 5.25 prove Theorem 5.23. As

a Corollary of the proof of Proposition 5.25 we can conclude more about the struc-

ture of finite free completions.

COROLLARY 5.26: Let (Ω, v0) be a based connected free Γ-complex with finite standard

free completion (Ω̂free, v0) (where we denote the image of the basepoint v0 in Ω̂free by v0 as

well). Let (Ω̂, v0) be a completion of Ω, then there is a based embedding of the core graph

C(Ω̂, v0) into (Ω̂free, v0).

Proof. We carry over the notation from the proof of Proposition 5.25. Denote the

image of v0 ∈ Ω in any complex obtained as part of a (free) completion sequence

by v0 as well. Let (5.5) be a standard free completion sequence which terminates at

Ω′
N = Ω̂free, then (5.6) terminates at ΩN , which is a completion. By Theorem 5.10,

there is a based isomorphism between the core graphs C(Ω̂, v0) and C(ΩN , v0), so
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it suffices to find a based embedding C(ΩN , v0) ↪→ (Ω̂free, v0) = (Ω′
N , v0).

We showed that gN is a surjection which induces a bijection on the set of ver-

tices. For each edge in C(ΩN , v0), pick a lift to an edge in Ω′
N . The union of these

edges form an embedded copy of C(ΩN , v0) in Ω′
N .

We are principally interested in the case that Ω = ΩX is the wedge of circles

associated to some finite generating tuple X of WΓ. Since this space certainly has

a finite completion we can apply Theorem 5.23 and this Corollary to this case.

COROLLARY 5.27: Let X be a finite generating tuple for WΓ, then there is a finite free

completion Ω̂
free
X whose 1-skeleton contains a single vertex, and at least one edge labelled

by each s ∈ V Γ.

Proof. We can build a finite completion for WΓ along the lines of the Salvetti com-

plex for the Artin group AΓ. Explicitly, start with a wedge of circles labelled by

the vertices V Γ with basepoint v0. For each edge in Γ, take a 2-torus T 2 cellulated

using a single square and attach it to the wedge of circles by identifying the two

edges on T 2 with the edges labelled by the endpoints of the edge. Working induc-

tively on k, for each k-complete graph in Γ, take a k-torus T k cellulated using a

single (k)-cube. Attach it by sending the k edges of T k to the k edges labelled by

the vertices of the complete graph, and then identifying higher dimensional faces

with the tori already attached.

The result is a folded and cube full Γ-complex, ie a completion of WΓ. Its core

graph is its 1-skeleton, which contains a single vertex, and one edge for each vertex

in Γ. Let (Ω̂free
X , v0) be a free completion, then by Corollary 5.26 there is a based

embedding of the core graph so the completion contains at least one edge loop at

v0 labelled by each s ∈ V Γ. Suppose the 1-skeleton of Ω̂free
X contains more than

one vertex. Since the free completion is connected, there is a spanning tree which

contains at least one edge which is not an edge loop. Therefore, we can apply a

free fold of type (b) in Figure 5.3, contradicting the assumption that Ω̂free
X is freely

folded.
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5.5 Nielsen equivalence in RACGs

We want to use free completions to study Nielsen equivalence in of RACGs. We

mention the more general case of quasiconvex subgroups below, see Example 5.32.

Let (Ω̂free, v0) be a based free completion of WΓ—we want to find the generating

tuple of WΓ which it represents. Recall from Section 5.1.1 that a based Γ-labelled

cube complex represents a map g : Ω̂free → OΓ from the underlying cube complex

to the complex of groups which represents WΓ. The map g∗ induced on (com-

plex of groups) fundamental groups is a marking Fn → WΓ. In order to find a

generating tuple corresponding to this marking, we first perform a sequence of

combinatorial retractions to Ω̂free.

5.5.1 Combinatorial retractions

Definition 5.28. Let Ω be a cube complex. A free face in Ω is a cube c such that:

• there is some maximal (with respect to inclusion) cube c′ which contains c

as a codimension one face;

• the only cube which contains c as a face is c′; and

• the attaching map of c′ to Ω is injective on the interior of c.

Given a free face c in Ω contained in the maximal cube c′, the combinatorial

retraction of Ω at c is the complex obtained by deleting the interior of c (or the

whole of c if it is a vertex) and the interior of c′ fromΩ. See Figure 5.6 for examples.

LEMMA 5.29: Let (Ω, v0) be a based connected finite free Γ-complex, and let (Ω′, v0) be

obtained from (Ω, v0) by a combinatorial retraction which does not delete the base point

v0. Then (Ω, v0) and (Ω′, v0) represent the same marking.

Proof. Thinking of (Ω, v0) as a topological space, combinatorial retraction is a re-

traction and so, in particular, it does not change the fundamental group. If the

retraction involves deleting the interiors of a (k + 1)-cube c′ and its k-face c for

k ⩾ 2, then the 1-skeleton of (Ω, v0) is left unchanged and the claim is trivial.
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free face free face

free face

Figure 5.6: Some examples of combinatorial retractions of edges, squares, and cubes.

Suppose k = 1, and let ` be a based loop in (Ω, v0) which traverses the edge c

from v to v′. Let e1, e2, and e3 be the other three edges of the square c′ listed cycli-

cally from v to v′. Then pushing ` across c′ gives a new loop `′ which is homotopic

to `, and which traverses e1e2e3 instead of c. The word labelling `′ represents the

same element of WΓ as `, since we have replaced the letter s (which labels c) with

the subword tst where t and s commute in WΓ.

If k = 0 then c is a vertex with valence 1 and by assumption c 6= v0. There-

fore, any based loop which goes through c must backtrack at that point, and so is

homotopic, relative to its endpoint, to a loop which skips c. This combinatorial re-

traction corresponds to deleting an occurrence of ss in the word labelling the loop,

and so does not change the element of WΓ to which the label corresponds.

Performing combinatorial retractions which do delete v0 and the edge e con-

taining it, we can update the basepoint to be the other endpoint of e. This has the

effect of changing the subgroup of WΓ associated to Ω by conjugating by the label

of e.

Free completions give us a method to test whether a given marking of WΓ is

Nielsen equivalent to (a stabilisation of) a standard marking, ie F#V Γ → WΓ : xi 7→

vi, where (v1, . . . , v#V Γ) is some ordering of the vertices ofΓ. All standard markings

of WΓ are Nielsen equivalent.

THEOREM 5.30: Let φ : Fn → WΓ be a marking of WΓ such that the generators of Fn are
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mapped to a tupleX . Let Ω̂free
X be a standard free completion of the rose graphΩX associated

to X . If Ω̂free
X retracts onto a graph then φ is Nielsen equivalent to (a stabilisation of) a

standard marking.

Proof. Notice that if we perform a combinatorial retraction from a free face cwhich

has dimension at least 1, then we do not change the number of hyperplanes in Ω̂free
X

(recall Definition 5.1). By Corollary 5.27, Ω̂free
X contains no free faces of dimension

1, nor can any appear as a result of a sequence of retraction. Furthermore, Ω̂free
X

contains at least one hyperplane labelled by each v ∈ V Γ. Let Ω be the graph onto

which Ω̂free
X retracts, then this is a rose graph with at least one edge labelled by

each v ∈ V Γ. If there are two edges with the same label, these can be freely folded

together. As a result, φ is Nielsen equivalent to (a stabilisation of) the marking

represented by the rose graph with exactly one edge labelled by each v ∈ V Γ,

which is the standard marking.

Since only finitely many cubes in Ω̂free
X , only finitely many combinatorial retrac-

tions can be performed, and so this test can be made algorithmic.

If Ω̂free
X does not retract onto a graph, we can still read off a generating tuple

which it represents. First apply all possible retractions, then read off a presen-

tation for the fundamental group by taking the free fundamental group of its 1-

skeleton and adding relations coming from the squares. After removing some

redundant generators and relations, the result is a non-free basis for a free group

and the relations are primitive elements in the free group generated by this basis.

By applying Whiteheads algorithm, we can replace this presentation with a free

presentation and then read off from this new presentation, a generating tuple. See

the first example below for an illustration of this.

5.5.2 Some non-examples

Theorem 5.30 is not sufficient to prove that all finite generating tuples of a RACG

are Nielsen equivalent to some stabilisation of a standard generating tuple since

in principle, Ω̂free
X may not retract onto a graph. We give two examples of this

phenomenon outside of the class of RACGs.
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Example 5.31. We know that in the dihedral group Dih5, the pair X = (s1, s2s1s2)

is not Nielsen equivalent to the standard one, see Theorem 2.1.

It is possible to generalise the construction of (free) completion sequences to

arbitrary Coxeter systems (W,S), where Γ-complexes are replaced by CW com-

plexes whose cells are Coxeter polytopes (see Theorem 4.14) which are edge-labelled

by S. We will sketch this in the case of Dih5. Folds and cell identifications remain

unchanged, and cube attachments are replaced by cell attachments which encode

Tits moves of type (M1). It is not immediately clear how to generalise all of the

theory presented in [31] to this setting, but a straightforward argument allows us

to prove a version of Corollary 5.26 in this generality.

Given a finite generating tuple X of W , we can build the rose graph (ΩX , v0)

and find a ‘free completion’ of ΩX , ie a free CW complex (as described above) in

which no more free folds, cell attachments, or identifications can be performed—

call this Ω̂free
X . The idea is that, for each s ∈ S, there is some based loop in (ΩX , v0)

whose label is a word w representing s. Take a disk diagram whose boundary is

labelled by ws and which is tiled by Coxeter polygons, and attach this to (ΩX , v0)

along the loop labelled w by a sequence of cell attachments. Doing this for each

s, the result is a complex Ω′ which has a based edge loop labelled by each s ∈ S.

Now take a maximal tree in the 1-skeleton of Ω′, and we can freely fold this onto

the set of based edge loops. Doing any remaining free folds, attachments, and

identifications we get Ω̂free
X which has the rose graph (ΩS, v0) embedded in it (this

takes the place of C(Ω̂, v0)) in Corollary 5.26.

Doing this for the pair X given above, ΩX folds to a ‘dumbbell’ graph which

contains a based edge loop labelled s1. The relation (s1s2)
5 allows us to take the

word w = s1s2s1s2s1s2s1s2s1 representing s2. Attaching a decagon as shown in

Figure 5.7, we can perform a single final free fold to obtain Ω̂free
X .

By construction, Ω̂free
X has a free fundamental group, however the attaching

map for the decagon traverses every edge at least twice, so there are no free faces

from which we can retract onto a graph. This is the topological manifestation of

the fact that X is not Nielsen equivalent to S. This complex can be viewed as

the presentation complex for the free group F2 corresponding to the one-relator
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Figure 5.7: The ‘free completion’ of a generating pair for Dih5 which is inequivalent to the
standard one.

presentation

〈x, y, z | xyzyxyzyxy〉.

The corresponding marking φ : F2 → Dih5 maps x, z 7→ s1 and y 7→ s2. Ap-

plying Whitehead’s algorithm to this presentation to find a free basis for F2 yields

(y, xyzyxy), soφ corresponds to the generating pair (s2, s1s2s1s2s1s2) = (s2, s2s1s2s1)

which, as is necessarily the case, is Nielsen equivalent to X .

Our second example is more directly related to RACGs as it concerns a qua-

siconvex subgroup of a RACG. Whereas previously the free completion failed to

retract onto a graph because the generating tuple it came from was not Nielsen

equivalent to a standard one, in this example the generating tuple is Nielsen equiv-

alent to the a stabilisation of a standard generating tuple.

Example 5.32. This example is based on Louder’s pathological example of a gen-

erating tuple of the closed surface group of genus 2 given in Example 4.1 of [76].
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Let G = π1(S2) by the fundamental group of the closed orientable surface of

genus 2, with standard presentation

〈a1, b1, a2, b2 | [a1, b1][a2, b2]〉.

This group can be realised as a quasiconvex subgroup of some RACG in many

ways, for concreteness consider the following. Let Γ be the pentagonal graph:

s1

s2

s3s4

s5

Then WΓ acts on H2, generated by reflections in the sides of a right-angled pen-

tagon. Now G can be identified with a subgroup of WΓ by mapping

a1 7→ s1s3,

b1 7→ s2s4,

a2 7→ s5s1s3s5,

b2 7→ s5s2s4s5.

The G acts with a fundamental domain tiled by eight pentagons, so G is finite in-

dex, and hence quasiconvex. Taking the quotient H2/G gives the closed orientable

genus 2 surface. The tiling of H2 dual to the pentagonal tiling is a G-invariant

square tiling, which descends to a cube complex structure on H2/G. Each hyper-

plane in H2/G (thought of as a cube complex) lifts to a hyperplane in H2 (though

of as aWΓ space on whichW acts by reflections). The stabiliser of each hyperplane

in H2 is generated by some reflection which is conjugate to exactly one element of

V Γ. Label the hyperplanes of H2/G by the element of V Γ which is conjugate into

the stabiliser of the lift of the hyperplane to H2. This gives H2/G the structure of a

Γ-labelled square complex, see Figure 5.8. This is folded and cube full, and hence

a completion of G. Its core graph is its entire 1-skeleton.

We could represent the standard marking ofG by a map from the wedge prod-
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s1

s3

s1

s3

s1

s3

s1

s3

s5

s5

s2
s2

s4
s4

Figure 5.8: The genus 2 surface as a Γ-complex.

uct of two once-punctured tori, one mapping onto the left-half of the surface, the

other mapping onto the right-half of the surface. To get a more interesting mark-

ing, take a 3-fold cover of the left-hand torus to get a once-punctured genus 2

surface, and a 5-fold cover of the right-hand torus to get a once-punctured genus

3 surface. Taking again the wedge of these two surfaces (calling the result Ω) and

giving them a suitable Γ-complex structure, we can represent this marking by the

map of spaces shown in Figure 5.9.

s5

s5

Figure 5.9: A pathological marking of G.
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Algebraically, this corresponds to the generating tuple of size ten:

(a1b1a
−1
1 , a21b

−1
1 a−1

1 b−1
1 , b21, b1a1b1,

b−1
2 a2b2a2b2a

−1
2 b−1

2 , b32, a2b
2
2, a

−1
2 b−1

2 ,

b2a2b
−1
2 , b−1

2 a2b
−1
2 a−2

2 b2, b
−1
2 a22b

−1
2 a−1

2 b2),

which expressed in terms of the generators of WΓ becomes[]

(s1s2s4s1, s1s3s1s4s2s1s4s2, s2s4s2s4, s2s4s1s3s2s4,

s5s4s1s3s4s1s2s4s1s4s2s5, s5s1s3s1s3s1s3s5, s5s1s2s4s2s4s1s4s2s5,

s5s2s4s1s3s4s2s5, s5s4s2s1s4s1s3s1s4s5, s5s4s2s1s3s1s4s1s4s5)

The two boundary circles of Ω have length 12 and 20 respectively, and writing

w = s1s4s1s4, their labels are w3 and w5. By attaching a strip of 20 squares labelled

alternately by {s1, s5} and {s4, s5}, we can ‘pull’ the longer boundary circle across

the edge labelled s5, to get a new complex Ω′.

The boundary of Ω′ is now a wedge of two circles which can be thought of

as divided up into a triangle and a pentagon, with each edge labelled by w and

oriented (since w, unlike the generators of WΓ, is not an involution). Since 3 and 5

are co-prime, we can perform a sequence of Stallings folds (respecting the orienta-

tion) which map the boundary onto the 2-rose. In Figure 5.10, we have illustrated

the image of the circle of length five. Notice it traverses each edge of the 2-rose at

least twice, so if we call the resulting complex Ω′′, it contains no free faces.

w

w

w

w

w

w

w

w

Figure 5.10: A wedge of two circles of length 3 and 5 freely fold onto the 2-rose.

Notice that, at every vertex in Ω′′, there is an edge labelled by each element
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of V Γ and a square labelled by {si, si+1} for each 1 ⩽ i ⩽ 5 (where indices are

read modulo 5). It follows that in any (free) completion sequence starting with

Ω′′, no square attachments are possible which might create a free face. One can

also check that no square identifications will create a free face either. As a result,

the free completion of Ω′′ does not retract onto a graph.

Unlike in the previous example, this is not because the marking represented

by Ω′′ is not Nielsen equivalent to a stabilisation of a standard marking. This is

because Louder proves that all finite generating tuples of closed surface groups

are reducible or Nielsen equivalent to a standard marking [76]. Instead, it results

from the fact that to see this equivalence, we must at some stage make the marking

more complicated before we can fully simplify it.

5.5.3 Questions, conjectures, and code

We have implemented the Tits representation (Theorem 1.8), standard completion

sequences (Section 5.1.4), and standard free completion sequences (Section 5.4) in

Mathematica [102] which allows us to apply Theorems 5.14 and 5.30 to explore

Nielsen equivalence in RACGs.

More specifically, the Tits representation gives an efficient solution to the word

problem with which we can enumerate all elements of a given RACG WΓ up to a

certain length N . We can then randomly choose tuples of these elements of size

greater than or equal to the rank of WΓ by selecting elements uniformly without

replacement from {w ∈ W | `(w) ⩽ N}. Next check whether they generate using

Theorem 5.14, since the procedure will fail to halt if the random tuple generates

a nn-quasi-convex subgroup, be put a cap on the number of steps the procedure

runs for before it gives up and assumes the tuple does not generate. Finally, we

can apply Theorem 5.30 to each random generating tuple we find to see whether

it is ‘obviously’ Nielsen equivalent to a standard generating tuple (obvious in the

sense that the standard free completion retracts onto a graph), or, if this test fails,

it needs to be studied more closely.

In particular, we have done this for several choices of Γ and most of all for Γ

the pentagonal graph of Example 5.32. Every generating tuple we have found has
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been ‘obviously’ Nielsen equivalent to some stabilisation of a standard generating

tuple, and on the strength of this we make the following Conjecture.

CONJECTURE 5.33: Let (W,S) be a Coxeter system for a RACG, then every generating

tuple for W is Nielsen equivalent to (some stabilisation of) S.

In light of Corollary 4.45, it suffices to show that every generating tuple of a

RACG is Nielsen equivalent to a tuple of reflections. Alternatively, one could ask

the following question, a positive answer to which would prove the Conjecture.

Question 5.34. For every RACGs WΓ, and any generating tuple X , does Ω̂free
X al-

ways retract onto a graph?

More generally, everything in this Chapter up until Section 5.5 works in the

context of quasiconvex subgroups of RACGs. Generalising the definition of a stan-

dard generating tuple for such a group (with a fixed quasiconvex embedding into

WΓ), and proving that all such standard generating tuples are equivalent is not

completely straightforward. Nevertheless, it is reasonable to imagine that some

version of Theorem 5.30 holds in this case. Of course, Example 5.32 demonstrates

that Question 5.34 does not have a positive answer for arbitrary quasiconvex sub-

groups, however we can ask the following question.

Question 5.35. Can free completion sequences be used to study Nielsen equiva-

lence in quasiconvex subgroups of RACGs?

Leaving the world of Coxeter groups, Michael Ben-Zvi, Robert Kropholler, and

Rylee Alanza Lyman generalise the completion sequences of Dani and Levcovitz

to study subgroups of fundamental groups of non-positively curved cube com-

plexes. This includes the class of right-angles Artin groups we mentioned at the

start of Chapter 2. Therefore we can ask to what extent the work presented here

generalises to that setting.

Question 5.36. Can free completion sequences be generalised to the setting of

non-positively curved cube complexes in order to study Nielsen equivalence in

the associated groups?



We can only see a short distance ahead, but we can see

plenty there that needs to be done.

ALAN TURING (1912–1954)

Mathematician and pioneer of computer science

Part II:

Equivariant machine learning
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Chapter 6

Background on machine learning

PART II OF THIS THESIS DISCUSSES joint work with Benjamin Aslan and Daniel Platt,

much of which is featured in [3]. We approach the well-studied problem of group

invariant and equivariant supervised machine learning from the point of view of ge-

ometric topology. In this Chapter we give the relevant background on supervised

machine learning in general, as well as introducing group equivariant and invari-

ant versions of machine learning. We summarise the literature on this topic, and

expand on a couple of specific approaches which have been tried in the past.

In Chapter 7, first we provide an overview of the mathematical underpin-

nings of our approach to invariant and equivariant machine learning via projec-

tion maps. Then we set out a unified model of so-called intrinsic approaches and

apply our own to several example machine learning problems.

The details of the projections we use are explored in Chapters 8 and 9. In the

first case we consider the special, but widely applicable, case of a group acting

on Rn0 by permuting coordinates. We define several versions of a projection onto

a fundamental domain using combinatorial tools from the study of permutation

groups. We give an explicit algorithm to compute such projections in general and

analyse the efficiency of this algorithm. We also explicitly compute the projections

for several group actions, showing that even more efficient algorithms to compute

the projections using sorting can be applied in special cases. The second half of the

Chapter is devoted to proving that the combinatorial maps that we define really

do project onto a fundamental domain for the action.
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In the final Chapter we discuss another, more generally applicable, method of

finding projections onto a fundamental domain based on the idea of a Dirichlet

fundamental domain and gradient descent. We also give an example computing

an isometric embedding for the quotient space of one of the group actions fea-

tured in our example machine learning problems, namely Z4 acting on R4 ⊗ Rn

by cyclically permuting the coordinates in the first factor. Finally we quantita-

tively compare our projections with a related approach which uses non-isometric

embeddings of quotient spaces.

6.1 Supervised machine learning

Supervised machine learning refers to a large class of algorithms and techniques

used to make computers solve complex problems by ‘learning’ a relationship be-

tween a large set of data and labels for that data. A typical example is image

recognition, where the data set consists of images of, say, animals, and the labels

are the English names for these animals.

As an example to have in mind of how a machine learning algorithm might

work, we briefly sketch a simple neural network which could be applied to such an

image recognition task. For the purpose of illustration, assume that each image

consists of an (n × n)-array of pixels, each of which can take a brightness value

between 0 and 255 (ie the pictures are monochrome). Thus, any image can be

represented by a point in Rn2 . Further, assume that the images are to be classified

into k categories, then we can represent this classification by a map α : Rn2 → Rk,

where an image which falls into the ith category is mapped to the ith standard unit

vector in Rk.

A neural network is then a model which can approximate α. Mathematically,

a neural network is a variable which takes values in the class of functions

Mn0,n1,...,nℓ+1
(σ)

of the form

β = Rn0
λ0+τ−→ Rn1 σ−→ Rn1

λ1−→ · · · λℓ−1−→ Rnℓ
σ−→ Rnℓ

λℓ−→ Rnℓ+1
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where n0 = n2, nℓ+1 = k, each λi is linear, τ is an affine translation of Rn1 , and

σ is a non-linear self map called an activation function. Each space Rni is called

a layer— the first and last are the input and output layers respectively, and the

interstitial spaces are hidden layers. A commonly used activation function is the

rectified linear unit (ReLU) which maps component-wise x 7→ max{0, x}.

There are several ways to think about the role of the activation function σ.

From a mathematical point of view, without it β could only be an affine map

which greatly limits its expressiveness; σ is what allows β to be a more compli-

cated function. From a more applied point of view, one can think that each of the

coordinates in some intermediate space Rni is variables which we only want to

turn on above a certain threshold value, say, and the activation function performs

this task if it is ReLU. Overall, β is a piece-wise affine map (or for other choices of

σ, it can be thought of as a smoothed out piece-wise affine map).

A neural network ‘learns’ the map α by defining some form of cost function,

which measures to what extent β approximates α, and then modifying β to de-

crease this cost. More precisely, we start with a set of training data Dtrain =

{(x, α(x)) | x ∈ Xtrain ⊂ Rn0} ⊂ Rn0 × Rnℓ+1 , which samples the function α.

Now we can choose a norm on a suitable class of functions which contains α and

Mn0,n1,...,nℓ+1
(σ) and approximate the norm of (α−β) by restricting these functions

to the set Xtrain.

Once each of the linear maps λi has been expressed in terms of bases, they

are given by matrices whose entries (called weights) are variables. Starting with

some randomly chosen β ∈ Mn0,n1,...,nℓ+1
(σ), we perform gradient descent with

respect to the norm of (α − β), at each step updating the weights to approach

some local minimum. In this way, we compute algorithmically a piece-wise linear

approximation for α.

It is natural to wonder how expressive neural networks can be. In other words,

can they be used to approximate any ‘reasonable’ function α : Rn0 → Rnℓ+1? A

positive answer is given by the Universal Approximation Theorems, a collection of

fundamental results in the theory of machine learning which state that any ‘suf-

ficiently nice’ function α : Rn → Rm can be arbitrarily well approximated by a
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neural network with one hidden layer.

To state these Theorems precisely, we need to specify the norm with respect to

which we are measuring how well functions approximate each other. Versions of

the Universal Approximation Theorem hold weighted Sobolev norms (Theorems

3 and 4 in [65]). Here we will state the versions for Lp norms and the supremum

norm.

Definition 6.1. Given a function f : Rn → Rm and a measure µ on X , its Lp norm

(for 1 ⩽ p <∞) is

‖f‖µp :=

(∫
Rn

m∑
i=1

|fi(x)|pdµ(x)
) 1

p

,

where fi(x) is the projection of f(x) to the ith coordinate ofRm. We writeLp(µ,Rm)

for the set of functions f : Rn → Rm such that ‖f‖µp <∞.

Then the distance between α and β is ‖α − β‖µp . Denote by Mn,∗,m(σ) the set

of functions Rn → Rm implemented by a neural network with activation func-

tion σ : R → R (which we extend to ant Rk by applying it component-wise) and

one hidden layer with arbitrarily many neurons. In particular, a function β ∈

Mn,∗,m(σ) has the form

β : Rn → Rm : x→ λ1σ(λ0x+ τ),

where λ0 ∈ Rk×n, τ ∈ Rk, and λ1 ∈ Rm×k for some k ∈ N. The Universal Approxi-

mation Theorem, as stated in Theorem 1 of [65] is as follows.

THEOREM 6.2 (Lp Universal Approximation Theorem): For a bounded and non-constant

activation function σ, Mn,∗,m(σ) is dense in Lp(µ,Rm) for all finite measures µ on Rn.

A measure is finite if µ(Rn) <∞. A prototypical situation to bear in mind is as

follows. LetX ⊂ Rn be compact, and suppose we want to approximate a function

α : X → Rm with a neural network. Extend the definition of α to Rn by setting

it equal to 0 on Rn\X and consider the measure space (Rn,L, µ) where L is the

σ-algebra of Lebesgue measurable sets. Let µ be the restriction of the Lebesgue

measure µL on Rn to X , ie for A ∈ L, µ(A) = µL(A∩X). Theorem 6.2 implies that

α can be arbitrarily well approximated by a neural network in Lp(µ,Rm).
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The example of σ being ReLU does not satisfy the hypothesis of this version of

the Universal Approximation Theorem, but another example of a function often

used which does is the sigmoid function which is applied component-wise by

x 7→ (1 + e−x)−1.

For the second version of the Universal Approximation Theorem we state, we

need to define a second norm.

Definition 6.3. Given a function f : X → Rm on a compact set X ⊂ Rn, its supre-

mum norm is ‖f‖X∞ := supx∈X |f(x)|.

Let us denote by C(X,Rm) the set of continuous functions X → Rm from a

compact subset X ⊂ Rn. The Universal Approximation Theorem, as stated in

Theorem 2 of [65] is as follows.

THEOREM 6.4 (Supremum Universal Approximation Theorem): For a continuous,

bounded, and non-constant activation function σ, Mn,∗,m(σ) is dense in C(X,Rm) for all

compact subsets X ⊂ Rn.

From now on we work in a somewhat more general setting than that described

for neural networks. We wish to approximate a function α : X → Y between an

input (or feature) space and an output space. Typically, these may be subsets of

Rn, but could be more complicated like Riemannian manifolds. We consider the

problem in the case that α is invariant under some left action of a group G on X

(or, more generally, equivariant with respect to actions of G on X and Y ).

Machine learning models such as neural networks or random forests can ap-

proximate α, but the resulting function β is generally not invariant under the ac-

tionG. The key task is to define machine learning algorithms producing functions

β : X → Y which are necessarily invariant.

6.2 Literature on invariant and equivariant machine

learning

Machine learning models which are invariant (or equivariant) under the action

of a group G have been extensively studied in the machine learning literature.
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In [115], Dmitri Yarotsky distinguishes two different approaches to the problem:

symmetrisation based and intrinsic approaches. The first involves averaging some

non G-invariant model over the action of G to produce an (approximately) G-

invariant model; whereas intrinsic approaches involve designing the model to be

G-invariant a priori by imposing conditions coming from the group action.

A standard symmetrisation based approach is data augmentation, which was

used in early works such as [72], and is surveyed in [22]. Given training data

Dtrain = {(x, y) | x ∈ Xtrain ⊂ X, y = α(x) ∈ Y }, it involves adding more training

data by applying sample elements G0 ⊂ G to the inputs. The new training data is

then Daug
train := {(g · x, y) | (x, y) ∈ Dtrain and g ∈ G0} in the invariant case, or {(g ·

x, g · y)} in the equivariant case. A similar approach is to take a machine learning

architecture β and apply it to several G-translates of an input, before applying a

pooling map to these different outputs. This yields a G-invariant map and was

studied in [5].

We now turn to examples of intrinsic approaches. For neural networks, one

can impose restrictions on the weights (ie the coefficients of the linear maps) so

that the resulting network is invariant under a group action on the input. This

was done using group equivariant hidden layers, for example, in [59, 116]. The

same idea is also used in [81, 96, 97].

Convolutional layers in neural networks are a standard tool to impose transla-

tional symmetry in image classification tasks. This idea has been generalised to

group equivariant convolutional neural networks in [25] for actions by arbitrary

discrete groups. Another intrinsic approach is proposed in Section 2 of [115] based

on the theory of polynomial invariants of G. All of these approaches are concerned

with discrete symmetries. Below we discuss two of these approaches in slightly

more detail. The study of continuous symmetries was initiated in [71] and ex-

panded in [108, 27]; and the case of Euclidean transformations has received addi-

tional attention, for example in [52, 112].
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6.3 Equivariant layers in neural networks

A G-equivariant neural network (see for example [81]) consists of a series of G-

equivariant linear maps λi separated by some non-linear activation function σ,

yielding β = λℓ ◦ σ ◦ · · · ◦ σ ◦ λ1. Restrictions are placed on the learnable param-

eters of each λi to ensure they are G-equivariant. For example, if λi : Rn → Rn

is equivariant with respect to Sn acting on each copy of Rn by permuting coordi-

nates, then it was shown in Lemma 3 of [116], that it must have the form

λi(x) = (aI+ b1T1)x,

where a, b ∈ R are learnable parameters, I represents the identity matrix, and

1 = (1, 1, . . . , 1). For arbitrary groups, the main task is to describe the space of

all G-equivariant linear maps λ : Rn1 → Rn2 which could map between layers in

the neural network. One approach to this problem is based on decomposing the

representation of G on Rn1 and Rn2 into irreducible components and applying

Schur’s Lemma. Other methods to determine all equivariant linear layers were

proposed in [26, 46].

6.4 Equivariant maps from polynomial invariants

We discuss briefly the approach proposed by Yarotsky in Section 2 of [115] based

on the theory of polynomial invariants of a group G acting on X = Rn. A poly-

nomial p(x) ∈ R[x1, . . . , xn] is called a polynomial invariant if it defines an invariant

map Rn → R. Similarly, if G also acts on Rm, then q(x) : Rn → Rm is a polynomial

equivariant if it is a polynomial such that q(g ·x) = g · q(x) for all g ∈ G and x ∈ Rn.

The following, proved in [92] in the invariant case, was generalised to compact

Lie groups in Theorem 8.14.A of [113].

THEOREM 6.5 (Section 4 of [114]): If a finite group G acts on Rn and Rm, then there

are finite sets of invariants {pi(x)}ki=1, and equivariants {qj(x)}lj=1 such that any polyno-

mial equivariant q(x) can be written as q(x) =
∑l

j=1 qj(x)rj(p1(x), . . . , pk(x)) for some

rj(x) ∈ R[x1, . . . , xk]. In the invariant case, when G acts trivially on Rm, we can take

l = 1, and q1(x) = 1.
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Yarotsky shows in Proposition 2.4 of [115] that any continuous G-equivariant

function α : Rn → Rm can be approximated on a compact set by a G-equivariant

neural network of the form

β(x) =
l∑

j=1

qj(x)
d∑

h=1

ajh σ

(
k∑
i=1

bjhipi(x) + cjh

)
(6.1)

for some ajh, bjhi, cjh ∈ R, where d ∈ N, and σ is a continuous non-polynomial

activation function.

Notice that all the learnable parameters are contained in the inner two sums,

which also constitute the neural network in the G-invariant case

d∑
h=1

ah σ

(
k∑
i=1

bhipi(x) + ch

)
, (6.2)

see Proposition 2.3 in [115].



Chapter 7

Geometric approach to equivariant

machine learning

THERE ARE MANY VARIATIONS ON this basic model of a neural network such as con-

volutional networks; as well as many other models for supervised machine learn-

ing, for example random forests or support vector machines (SVM). We propose

a novel approach to group invariant and equivariant machine learning using a

data pre-processing step. This involves projecting the input data into a geometric

space which parametrises the orbits of the group, either a fundamental domain,

or the quotient space. A significant advantage of this method over several others,

is that this new data can then be the input for an arbitrary machine learning model

(neural network, random forest, support-vector machine etc).

We give algorithms to compute the projection onto a fundamental domain, one

which works very generally, and another which is specialised to groups acting on

Rn0 by permuting coordinates. These algorithms are efficient to implement, and

we illustrate our approach on some example machine learning problems (includ-

ing the well-studied problem of predicting Hodge numbers of CICY matrices),

in each case finding an improvement in accuracy versus others in the literature.

The geometric topology viewpoint also allows us to give a unified description of

so-called intrinsic approaches to group equivariant machine learning, which en-

compasses many other approaches in the literature.

209



210 OVERVIEW

7.1 Overview

We focus on the case ofG-invariant machine learning—The extension of this toG-

equivariant machine learning is explained in Remark 7.3 below and is fundamen-

tally no harder than the invariant case. Our approach to the problem is intrinsic,

based on the fact that composing aG-invariant map with any other map, results in

aG-invariant map. One way of getting aG-invariant self-map of the feature space

is to map to a fundamental domain F , which preserves the local geometry of the

feature space. The set F ⊂ X comes with a G-invariant map π : X → F onto its

closure. Letα be the restriction ofα toF , then byG-invarianceα = α◦π. Instead of

fitting a machine learning model β : X → Y to the training dataDtrain, we train the

model β : F → Y withDπ
train := {(π(x), y) | (x, y) ∈ Dtrain} ⊂ F ×Y which approx-

imates α. The resulting map β = β ◦ π : X → Y is G-invariant. Figure 7.1 shows

the difference between the pre-processing approaches of augmentation and our

method.

Dtrain D
aug
train

F

Dπ
train

Figure 7.1: Example training data Dtrain for a problem invariant under rotations of 2π/3.
Also the processed training data after augmentation D

aug
train, and our approach Dπ

train (map-
ping all the data to the blue fundamental domain for the action).

One advantage our approach has is that it can be applied directly to any su-

pervised machine learning model. In contrast, many existing methods, such as

[59, 116, 81, 96, 97, 46, 26] only work for neural networks. The computational cost

of data augmentation and many equivariant machine learning approaches scales

with the size of the symmetry group. This is not the case for our approach, which

we implement for groups of size 6 · 1020 in Section 7.4.2.
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7.2 Mathematical approach

In principle, our approach works in a very general setting, however we restrict

ourselves to the following setting.

Assumption 7.1. For the remainder of this thesis, unless stated otherwise, the fea-

ture space X is a Riemannian manifold on which the G acts discretely by isome-

tries.

We want to approximate aG-invariant functionα, ie a function which takes the

same value on every element of aG-orbit. A setR ⊂ X is a set of orbit representatives

if for all x ∈ X ,R∩(G·x) 6= ∅. If we approximate α on a set of orbit representatives

then we have essentially approximated it everywhere. A nice choice of orbit rep-

resentatives which takes into account the geometry of the group action is given

by a fundamental domain.

Definition 7.2. Let a group G act on X discretely by isometries. A subset F ⊂ X

is called a fundamental domain for G if

• It is open and connected;

• Every G-orbit intersects F , the closure of F , in at least one point; and

• Whenever aG-orbit intersectsF at a point inF , then this is the unique point

of intersection with F .

Given G acting on X , we find a G-invariant map π : X → F , defined as π(x) =

φ(x)·x, where φ : X → G is some suitable function. We call such a map a projection

onto the fundamental domain F . We can now apply a machine leaning architecture

to approximate the function α|F : F → Y trained on the data Dπ
train yielding a

function β. This can then be used to compute the G-invariant approximation for

α defined on the whole of X by defining β = β ◦ π.

X Y

F

β

π

β
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If β is defined using a neural network, then the natural universal approxima-

tion property is satisfied, namely β can approximate any continuous, G-invariant

map α arbitrarily closely. This follows from the standard Universal Approxima-

tion Theorem and is proved in Section 7.2.1.

Remark 7.3 (Equivariant machine learning). Our method of producing aG-invariant

architecture can easily be modified to the G-equivariant setting. Let G act on X

and Y , then a G-equivariant map α : X → Y satisfies α(g · x) = g · α(x) for all

x ∈ X and g ∈ G. Let π : X → F be the fundamental domain projection as above,

and define φ : X → G be a function such that π(x) = φ(x) · x. Then we define the

β model via
β(x) := φ(x)−1 · β(π(x)) = φ(x)−1 · β(φ(x) · x),

which is indeed G-equivariant.

Remark 7.4 (Invariance on the boundary). The projection π is continuous on the

preimage of F in X , but may fail to be continuous on the preimage of the bound-

ary ∂F of F . Here φ is not necessarily G-invariant, and so the function β may

not be strictly G-invariant/equivariant on ∂F . This only presents a problem if a

significant portion of Dπ
train lies in ∂F . We give an example of this in Section 7.4.

The way to redress this issue with the boundary is to identify points in ∂F

which lie in the same orbit. The resulting space is the quotient space for the action

of G on X . We can define this quotient intrinsically as follows.

Definition 7.5. Let G be a group acting on X , then the quotient space X/G is the

set of allG-orbits of points inX , {G ·x | x ∈ X}. A quotient space is automatically

equipped with a G-invariant map πX : X → X/G : x 7→ G · x. If X is a subset of

Rn and the action is by isometries, X/G inherits a metric from the Riemannian

metric on X , and πX is a local isometry.

The quotient space is defined abstractly, but to be useful as input for a neural

network, say, we must realise it as a subset of a vector space. In order to pre-

serve the geometry of the quotient space, this embedding should be isometric,

and so we suppose we have such an isometric embedding X/G ↪→ Rn′
0 , and view
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π as a projection onto this image. Note that in general finding an explicit em-

bedding can be very difficult, and the dimension n′
0 may be significantly greater

than n0. In this case we train the machine learning model β : Rn′
0 → Rnℓ+1 on

Dπ
train = {(π(x), α(x)) | (x, α(x)) ∈ Dtrain}, and define β = β ◦ π.

7.2.1 Universal Approximation Theorem

To obtain a G-invariant version of Theorem 6.2, let LpG(µ,Rm) be the set of G-

invariant functions f : Rn → Rm such that ‖f‖µp < ∞, where µ is a G-invariant

finite measure. Note that, for a group acting by isometries on Rn with fundamen-

tal domain F , the existence of a non-zero G-invariant finite measure implies that

#G is finite. Indeed, since G must me countable,

∞ > µ(Rn) = µ

(⊔
g∈G

(g · F) t

(⋃
g∈G

g · ∂F

))
=
∑
g∈G

µ(g · F) + µ

(⋃
g∈G

g · ∂F

)

⩾
∑
g∈G

µ(F) = #Gµ(F).

Let MG
n,∗,m(σ) be the set of functions of the form β ◦ π where π : Rn → Rn is a

projection onto a fundamental domain F , and β ∈Mn,∗,m(σ).

THEOREM 7.6 (G-invariant Lp Universal Approximation Theorem): If σ is bounded

and non-constant, then MG
n,∗,m(σ) is dense in LpG(µ,Rm) for all finite G-invariant mea-

sures µ on Rn.

Proof. The claim is trivial for the zero measure, so assume that µ is not the zero

measure, and hence that #G < ∞. We need to show that, given ε > 0, a map

α : Rn → Rm in LpG(µ,Rm), and a projection π : Rn → Rn onto a fundamental

domain F , there is a neural network β ∈Mn,∗,m(σ) such that ‖α−β ◦π‖µp < ε. Let

α : Rn → Rm : x 7→ α(x)1F(x),

where 1F is the characteristic function of F ⊂ Rn. Since α ∈ LpG(µ,Rm), it follows

that α ∈ Lp(µ,Rm), so by Theorem 6.2, there is a network β : Rn → Rm such that
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‖α− β‖µp < ε/(#G)
1
p . Furthermore, by construction α = α ◦ π, which implies that

α− β ◦ π = α ◦ π − β ◦ π = (α− β) ◦ π.

Now, using the definition of ‖ · ‖µp and the G-invariance of µ we can compute

(‖α− β ◦ π‖µp)
p
= (‖(α− β) ◦ π‖µp)

p

=

∫
Rn

m∑
i=1

|((α− β) ◦ π)i|pdµ(x)

⩽
∑
g∈G

∫
g·F

m∑
i=1

|((α− β) ◦ π)i|pdµ(x)

= #G
∫
F

m∑
i=1

|((α− β) ◦ π)i|pdµ(x)

= #G
∫
F

m∑
i=1

|(α− β)i|pdµ(x)

⩽ #G
∫
Rn

m∑
i=1

|(α− β)i|pdµ(x)

= #G(‖α− β‖µp)
p ⩽ #Gεp/#G = εp,

where the subscript i indicates projection to the ith coordinate of Rm. Hence,

‖α− β ◦ π‖µp ⩽ ε, as required. □

We can also prove a G-invariant version of Theorem 6.4. Let CG(X,Rm) be the

set of G-invariant continuous functions X → Rm. In order to apply Theorem 6.4,

we need to slightly restrict the domain of the functions with which we work.

Definition 7.7. Let π be a projection onto a fundamental domain F for G acting

by isometries on Rn. A subset X ⊂ Rn is π-admissible if π is continuous when

restricted to X .

By Remark 7.4, we know that if π(X) ⊂ F (ie the image of X does not meet

the boundary of F), then X is π-admissible. Since the preimage of ∂F has mea-

sure zero in Rn (with respect to the standard Lebesgue measure), restricting to

π-admissible sets does not limit the usefulness of what follows except in the case

that the training data is projected onto ∂F by π.
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THEOREM 7.8 (G-invariant Supremum Universal Approximation Theorem): If σ is

continuous, bounded, and non-constant, then MG
n,∗,m(σ) is dense in CG(X,Rm) for all

compact, π-admissible, and G-invariant subsets X of Rn.

Proof. We need to show that, given ε > 0, a map α : X → Rm in CG(X,Rm), and a

projection π : Rn → Rn onto a fundamental domain F , there is a neural network

β ∈Mn,∗,m(σ) such that ‖α− β ◦ π‖X∞ < ε. Let α be the restriction of α to π(X).

SinceX is π-admissible, π(X) is compact. Then, from the fact thatα ∈ CG(X,Rm),

it follows that α ∈ CG(π(X),Rm). By Theorem 6.4, there is a network β : Rn → Rm

such that ‖α− β‖π(X)
∞ < ε. Furthermore, by construction α = α ◦ π. Then

‖α− β ◦ π‖X∞ = ‖α ◦ π − β ◦ π‖X∞ = ‖(α− β) ◦ π‖X∞

= ‖(α− β) ◦ π‖π(X)
∞

= ‖α− β‖π(X)
∞ < ε.

Here, the equality in the second line follows because π is G-invariant, and the

equality in the third line follows from the fact that π is the identity on π(X). □

There is something of a trade-off between Theorem 7.6 and Theorem 7.8. In

the first we put no restriction on the domain the of the function α in order to be

able to approximate it with a neural network, but the group acting must be finite.

Conversely, in the second, the group acting can be infinite, however we have to

restrict to approximating α on π-admissible compact sets.

7.2.2 Comparing approaches to equivariant machine learning

We can compare the various approaches to invariant machine learning discussed

in Section 6.2 on a theoretical level; below we compare them experimentally. Aug-

mentation is a data pre-processing step and can be applied to any model. How-

ever, the resulting model need not be G-invariant, and for large groups it is com-

putationally impractical to augment by a representative subset of the group.

As for intrinsic approaches, group equivariant neural networks like [25, 46,

81, 116] are model-specific, and there are unavoidable limits on their universality
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while using low-order tensors [82]. Additionally, [25] requires the elements of G

to be stored in memory, making it impractical for large groups.

The approach in [115] using polynomial invariants is not practical outside of

small group actions owing, in part, to the need to compute a basis of polynomial

invariants. This basis is, in general, large, increasing the dimension of the feature

space dramatically. Another drawback is that the polynomials significantly distort

the data geometrically, which we found leads to significant losses in accuracy for

the machine learning model when running informal experiments.

Projecting onto a fundamental domain combines the benefits of being com-

putationally easy to use, maintaining the original dimension and geometry of

the data, and being compatible with any machine learning model. The resulting

model is G-invariant almost everywhere (see Remark 7.4).

In principle, projecting to an isometric embedding of the quotient space re-

solves the issue raised in Remark 7.4 and it does not distort the data. However, it

suffers from the same problems as the polynomial invariants method otherwise.

Finding isometric embeddings is very difficult and significantly increases the am-

bient dimension. Therefore, this approach is not practical except for very special

cases, such as when the action is particularly simple, or when the quotient space

is equal to a fundamental domain.

7.3 Unifying intrinsic approaches to equivariant ma-

chine learning

We have focussed on approximatingG-invariant functions by considering them as

functions on a fundamental domain. In this Section we show that approximating

a G-invariant function is equivalent to approximating it on the quotient space. We

then pick up two approaches to G-invariant machine learning from the literature

alongside our approach, and explain in which sense they can be viewed as ma-

chine learning on quotient spaces. It is convenient to treat theG-invariant problem

as a special case of theG-equivariant problem. We return to the setting thatG acts

by isometries onX and Y which are Riemannian manifolds. To simplify the proof
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of Theorem 7.11 we make the following stronger assumption.

Assumption 7.9. In this Section, assume that G acts properly discontinuously on

X and Y .

The result of this is that the quotient space has the structure of a Riemannian

orbifold.

7.3.1 Universality of quotient spaces

For us the key is that quotient spaces are universal with respect to G-equivariant

maps.

Universal property of quotient spaces Given two spaces X and Y and a group

G acting on both, let πX : X → X/G and πY : Y → Y /G be the canonical projec-

tion maps. Then for any G-equivariant map α : X → Y there is a unique map

α : X/G→ Y /G such that πY ◦ α = α ◦ πX .

X Y

X/G Y /G

α

πX πY

α

If the action of G on X and Y is sufficiently ‘nice’, then the converse holds:

equivariant maps X → Y are parametrised by certain maps X/G → Y /G. No-

tice that for any G-equivariant function α, point stabilisers in X and Y have the

property that StabG(x) ⊂ StabG(α(x)).

Definition 7.10. A continuous map α : X/G → Y /G is compatible with the G

actions if

1. We have (α ◦ πX)∗(π1(X)) ⩽ (πY )∗(π1(Y )), and

2. For any x ∈ X/G let x ∈ X be a lift of x, and let y ∈ Y be a lift of α(x). Then

the stabiliser StabG(x) is conjugate in G to a subgroup of StabG(y).

Here (πY )∗ : π1(Y )→ π1(Y /G) denotes the map on fundamental groups induced

by the map πY , and similarly for (α ◦ πX)∗.
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It follows from the observation above that, if α is the map coming from the

universal property, then α is automatically compatible with the G-action. In the

special case that G acts trivially on Y (ie the G-invariant case) then every contin-

uous map α : X/G→ Y /G = Y is compatible.

THEOREM 7.11: Any compatible function α : X/G→ Y /G lifts to aG-equivariant func-

tion α : X → Y . Suppose α′ is another such lift, and assume there is some x0 ∈ X such

that α′(x0) = α(x0) where StabG(α(x0)) fixes Y point-wise. Then α′(x) = α(x) for all

x ∈ X .

We omit the proof, which can be deduced using Theorem 4.1.6 in [23]. This

gives a converse to the universal property, and shows that up to an isometry of Y

there is a one-to-one correspondence between G equivariant maps X → Y , and

compatible maps of their quotients.

Now suppose α : X → Y is a G-equivariant function we want to approximate

using a supervised machine learning algorithm. Using an intrinsic approach, as

discussed in Section 6.2, means approximating α by a function β which is a priori

G-equivariant. By the Theorem above, this is equivalent to approximating α by a

compatible function β.

7.3.2 Specific intrinsic approaches

We now discuss how different intrinsic approaches to the equivariant machine

learning problem fit into this framework.

Equivariant maps from polynomial invariants The relationship between the

method in [115] and quotient spaces is shown by the following result.

THEOREM 7.12 ([101]): The map p(x) := (p1(x), . . . , pk(x)) factors through Rn/G, and

induces a smooth embedding of Rn/G into Rk.

We can reinterpret the invariant version of (6.2) as a (fully-connected) neural

network β. We then train this network on the data Dp
train = {(p(x), y) | (x, y) ∈

Dtrain}which has been projected to the quotient space by p. Thus β learns the map

α directly.
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Fundamental domain projections Our approach of projecting onto a funda-

mental domain fits very naturally in this general framework. We want to try to

approximate the function α rather than approximating α. Instead of working di-

rectly with the quotient spaces, one can think of the map from the fundamental

domain to the quotient space πX |FX
: FX → X/G as a chart in the sense of differ-

ential geometry, so FX locally parametrises X/G, see Figure 7.2.

X

X/G

Y

Y /G

πX πY

α

α

Figure 7.2: A fundamental domain can be thought of as a chart for the quotient space.

In the invariant case, we can approximate α = α ◦ πX |FX
by approximating α.

In the equivariant case, we can also view πY |FY
: FY → Y /G as a chart, and be-

cause πY |FY
is a bijection onto its image we can apply its inverse and approximate

α = (πY |FY
)−1 ◦ α ◦ πX |FX

by approximating α. Note that πX |FX
and πY |FY

are

not surjective in general, and there is no canonical way to extend their domain to

make them so. The fix for this is to perturb points to lie in the preimage of FX as

discussed in Section 8.1.

Equivariant layers in neural networks On the face of it, the various approaches

to equivariant neural networks such as [81, 25, 46] bypass the compatible map α

by approximation α directly, restricting the space of maps which can be used.

However, as stated in Section 6.3, the main task when working with equivariant

layers in neural networks is to compute the space of equivariant linear maps. Here

we sketch an approach which is combinatorial and involves putting aG-invariant

simplicial complex structure on Rni and applying the compatibility criterion The-

orem 7.11 to the cells in the simplicial structure induced on the quotient space.

To simplify matters slightly for the purpose of exposition, assume that G acts

on Rn1 and Rn2 discretely and irreducibly by orthogonal matrices on each space.

Because the action is orthogonal (ie it fixes the origin and preserves the Euclidean
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metric), it leaves the unit sphere Sni−1 invariant in Rni . The sphere is compact

and the action is properly discontinuous, so it is possible to find someG-invariant

triangulation of Sni−1. Moreover, possibly after subdividing once, any two points

in the interior of some k-simplex have the same stabiliser inG, and if some simplex

τ is a face of another simplex τ ′, then StabG(τ ′) ⩽ StabG(τ).

Now, the projection map πi : Sni−1 → Sni−1/G =: Qi induces a simplicial struc-

ture on the quotient, and we can label each simplex τ in the quotient by the set

of stabilisers of all simplices τ ∈ Sni−1 which are mapped to τ , πi(τ) = τ . In fact

the label of τ defined in this way is exactly the conjugacy class of StabG(τ) in G

for some (equivalently any) τ such that πi(τ) = τ . We can now try to construct a

compatible map λ′ : Q1 → Q2 by mapping simplices τ 1 ∈ Q1 to simplices τ 2 ∈ Q2

such that some element of the label τ 1 is a subgroup of some element of the la-

bel of τ 2 (note τ 1 and τ 2 need not have the same dimension) so that these maps

glue together in a continuous way. This reduces the problem of checking the com-

patibility criterion on every point in Q1 to only checking it on a finite number of

simplices, and checking that the maps glue together.

7.4 Applications to machine learning problems

In this Section we show how G-invariant pre-processing can be applied to exam-

ples of classification tasks in group theory, string theory, and image recognition.

In each case, the symmetry group acts differently on the input space. We account

for this by appropriately choosing different projection maps which are defined in

detail in the next two Chapters. Experiments 7.4.1 and 7.4.3 are chosen as proof

of concept, not to reach the state of the art, the main application of our approach

is experiment 7.4.2. Implementation details may be found in [3].

7.4.1 Cayley tables

The following model problem was introduced in Section 3.2.3 of [62]: up to iso-

morphism, there are 5 groups with 8 elements. Separate their Cayley tables into

two classes and apply random permutations until 20 000 tables in each class exist.
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The problem is then to assign the correct one of two classes to a given table, and

this map is invariant under the action of S8 × S8 acting on R8 ⊗ R8 by row and

column permutations.

Let π↑ : R8⊗R8 → R8⊗R8 be the ascending projection map from Section 8.1, in

particular as defined in Section 8.1.3. This has an explicit description as follows:

given a choice of total order on the group elements, permute the columns so that

the first row is ordered smallest to biggest and then permute the rows so that the

first column is ordered smallest to biggest. Then, π↑ is invariant under the action

of S8 × S8 and can be efficiently computed for Cayley tables. This pre-processing

effectively ‘undoes’ the permutations, which makes the machine learning problem

trivial. Consequently, we achieve nearly perfect accuracy using a linear support

vector machine (SVM), see Table 7.1.

We compare our approach with the neural network from [62], with the Deep

Sets architecture from [116], and with the S8 × S8-invariant neural network from

[59]. The Deep Sets architecture is invariant under the action of the full S8·8 = S64

on R8 ⊗ R8. As all Cayley tables are in the same orbit under this group action,

the performance of this architecture can only be as good as random guessing.

Note that the general purpose architectures described in [81, 46] in this case are

identical to [59]. Other architectures from the literature, such as [25], are difficult

to apply to this problem, since they require keeping a non-sparse map S8×S8 → R

in memory. This group has size 8! · 8! ≈ 1.6 · 109.

Table 7.1: Accuracy of predicting the group isomorphism type of a Cayley table.

Accuracy
MLP [62] 0.501± 0.015
Deep Sets [116] 0.504± 0.010
G-inv MLP [59, 81, 46] 0.498± 0.012
π↑+SVM 0.994± 0.008
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7.4.2 CICY

In [54], a dataset of complex three-dimensional complete intersection Calabi-Yau

manifolds (CICYs) and their basic topological invariants is given. In [61], a neu-

ral network was used to predict (among other tasks) the first Hodge number of a

given CICY. Here, CICYs are represented by matrices of size up to 12 × 15, and

the first Hodge number is an integer. The same problem was subsequently stud-

ied in [18, 17, 43] using more sophisticated machine learning models. The prob-

lem is invariant under row and column permutations, ie an action of S12 × S15 on

R12⊗R15, but none of the machine learning models which have been implemented

previously for the Hodge number classification satisfy this invariance.

We compare two pre-processing maps: the map πDir : R12⊗R15 → R12⊗R15 de-

fined in Section 9.1, which we computed by performing discrete gradient descent;

and π↑ : R12 ⊗ R15 → R12 ⊗ R15 defined in the same way as in Section 7.4.1. We

found that composing πDir with existing neural networks slightly improves per-

formance, but not significantly. We also considered an alternative training task in

which input matrices first had their rows and columns randomly permuted. In

this case, our model outperforms models from the literature by a large margin.

We also compare our model with the group invariant model from [59] in both

training tasks, see Table 7.2. Again, the approaches of [81] and [46] reduce to [59].

As for Cayley tables, the approach in [25] is impractical due to the large group

size 12! · 15! ≈ 6 · 1020.

As our approach is intrinsic, it is well suited for problems with a large sym-

metry group. For all networks but the G-invariant multi layer perceptron (MLP)

the accuracy decreases on the permuted dataset. This suggests that the rows and

columns of the CICY matrices are already systematically ordered in the original

dataset. The map π↑ can be computed efficiently but need not be G-invariant on

the boundary of the fundamental domain, see Remark 7.4. This is a potential prob-

lem since the input data, which consists of integer-valued matrices, is discrete.

Indeed, a substantial proportion of the CICY matrices are very sparse and do lie

on the boundary, which could be the reason why π↑ performs relatively poorly on
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Table 7.2: Accuracies for the task of predicting the second Hodge number of a CICY ma-
trix. Models are compared on the original training task and on randomly permuted input
matrices. The last three rows are group invariant models, the first three rows are not
group invariant models.

Original dataset Randomly permuted
MLP [61] 0.554± 0.015 0.395± 0.029
MLP+pre-processing [17] 0.858± 0.009 0.417± 0.086
Inception [43] 0.970± 0.009 0.844± 0.117
G-inv MLP [59, 81, 46] 0.895± 0.029 0.914± 0.023
πDir+Inception 0.975± 0.007 0.963± 0.016
π↑+Inception 0.969± 0.009 0.539± 0.020

the permuted data set. The projection map πDir can only be approximated but is

fully G-invariant which is a crucial advantage on the permuted dataset.

7.4.3 Classifying rotated handwritten digits

As an instructional example, we use the MNIST dataset of 28 × 28 pixel images

of handwritten digits from [73], on which Z4 acts by rotating the images by mul-

tiples of π/2. We use the ascending averaging combinatorial projection defined

in Section 8.1.2, π↑av : R4 ⊗ R196 → R4 ⊗ R196. The map π↑av rotates each image

so that its brightest quadrant is the top-left quadrant. We also use a projection

onto the quotient space πZ4 defined in Section 9.3. We then compare performance

of a linear classifier, a shallow neural network, and SimpNet (see [60]) which is

among the top performers on the original MNIST task; first on their own, then

with data augmentation, and finally with the projection map π↑av, but without

data augmentation, see Table 7.3.

For linear classifiers, data augmentation does not improve accuracy substan-

tially. This is due to their small number of parameters. Unsurprisingly, pre-

processing with π↑av improves performance, because it is partially successful at

rotating digit pictures into a canonical orientation.

At first look the projection onto the quotient space πZ4 seems to outperform

all other methods, however it is difficult to draw conclusions from this. That is
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Table 7.3: Accuracy for the task of recognising handwritten digits. We use two different
degrees of data augmentation: either add every possible rotation of the input image to
the training data (Augmentation×4) or applying data augmentation until the training data
reaches 1.5 times its original size (Augmentation ×1.5). We also compare two projections,
π↑av which maps onto a fundamental domain, and πZ4 which projects onto the quotient
space.

No pre-processing π↑av πZ4
†

Linear 0.677± 0.001 0.784± 0.001 0.905± 0.001
MLP 0.939± 0.001 0.953± 0.003 0.967± 0.001
SimpNet [60] 0.979 0.979

Augmentation ×1.5 Augmentation ×4
Linear 0.682± 0.001 0.682± 0.001
MLP 0.963± 0.002 0.963± 0.001
SimpNet [60] 0.986 0.986

† In order to make πZ4 practical to compute, we first downsized the images to be 8 × 8
pixels. Although not stated in the table, performing experiments with a linear classifier
and MLP on this downsized data set, both with no pre-processing and with π↑av yielded
accuracies comparable to those shown for the full-sized images.

because the projection significantly increases the dimension of the input space,

from 82 = 64 (for downsized images) to 128. The effect of this is to greatly increase

the number of learnable parameters for the linear map λ0, which likely contributes

to the improved performance.

For neural networks with more than one layer, data augmentation increases

accuracy, because the model now has sufficient parameters to include the infor-

mation from the additional training data. Pre-processing using π↑av yields better

accuracy than no pre-processing, but worse accuracy than full data augmenta-

tion. If fewer training data points are added during the data augmentation step,

the benefit is comparable to applying the map π↑av.

This is one example of the fact that data augmentation may be the best pre-

processing option if the symmetry group G has few elements and one can aug-

ment by the full group. If #G is very large, this is not possible, and pre-processing

using a fundamental domain projection may be better than augmenting with a

small, non-representative, subset of G.



Chapter 8

Combinatorial projection maps

IN THIS CHAPTER, WE GIVE an algorithm to compute a projection onto a fundamen-

tal domain in a very special setting. While of course this does not cover all ma-

chine learning applications by any means, in practice this is sufficient for many

use cases.

Assumption 8.1. In this Chapter, assume that G ⩽ Sn is a subgroup of the per-

mutation group, which acts on X = Rn by permuting coordinates.

More precisely, if x = (xi)i ∈ Rn and s ∈ Sn we say s acts on the left by

s · (xi)i =
(
xs−1(i)

)
i
. This induces an action of G on Rn which we call a permutation

action of G. This action is discrete (since G is finite) and by isometries since it

preserved the Euclidean metric.

In the next Section, we describe a method of finding a similar projection for any

G. This method turns out to have a significant degree of flexibility in two senses:

first in the initial choice of a base for G ⩽ Sn, so that projections onto several

essentially different fundamental domains is possible for a given subgroup (ie the

different domains are not merely translates of one another).

The second is how the projection is applied: each projection is based on per-

muting the entries of some point x ∈ Rn based on their relative size, but one

can choose to ‘prioritise’ small values or large values, and whether the values of

individual entries, or of collections of entries are used. This leads to definitions

of ascending and descending projections, as well as averaging versions of both of

225



226 COMBINATORIAL PROJECTIONS

these. We also explicitly compute projection maps for several examples of groups.

In Section 8.2, we turn the procedure to compute the fundamental domain

projection into an implementable algorithm and analyse the time and space com-

plexity of this algorithm. We can compute π(x) in O(n3(log logn)2) time.

Finally, the last and longest Section of the Chapter contains the proof of The-

orem 8.5 which states that the procedure we have described for finding π does

indeed yield a projection onto a fundamental domain. The proof centres around

a method given in [36] for computing a right transversal for G ⩽ Sn, ie a complete

set of unique coset representatives for G in Sn, and the geometry of the action of

Sn on Rn. In particular, Sn is a Coxeter group of type A (see Table 1.1), and the ac-

tion on Rn essentially coincides with the action on its Davis complex. Thus we can

find a fundamental domain for Sn coming from a choice of fundamental chamber

(see Definition 4.4), and show that π projects onto a fundamental domain for G

which is a union of translates of this fundamental chamber.

8.1 Combinatorial projections

The algorithm to find a fundamental domain projection is based on [36] in which

the authors give an efficient algorithm to find a set of unique coset representatives

for an arbitrary subgroupG ⩽ Sn. A set of coset representatives can be turned into

a set of orbit representatives for the permutation action of G on Rn. We modify

their algorithm so that this set of orbit representatives is in fact a fundamental

domain, and so that it outputs an explicit projection map. This map is easy to

implement and efficient to compute.

8.1.1 The ascending projection map

We break the procedure down into several steps.

Finding a base Let N = {1, . . . , n}, which we identify with the set of indices for

the standard basis for Rn. Sn acting on Rn corresponds to the right action of Sn on

N by i · s = s−1(i). The first step of the algorithm is to find a base for G ⩽ Sn.
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Definition 8.2. A base for G ⩽ Sn is an ordered subset B = (b1, . . . , bk) of N such

that
⋂k
i=1 StabG(bi) = {1}, where StabG(bi) is the stabiliser of bi in G. Given a base

let G0 = G and for 1 ⩽ i ⩽ k, define Gi = StabGi−1
(bi) = Gi−1 ∩ StabG(bi).

It follows from this definition that Gk = {1}. One can always choose B =

(1, . . . , n− 1) as the base, although an algorithm to compute a more efficient base

is given in Section 8.3.3.

Definition 8.3. Given a baseB and the groupsGi, we also define ∆i to be the orbit

of bi under the action of Gi−1, ∆i := bi ·Gi−1.

Example 8.4. Let G be the subgroup in S4 generated by the elements (1 2) and

(3 4). ThenB = (1, 3) is a base and we have stabilisersG0 = {e, (1 2), (3 4), (1 2)(3 4)},

G1 = {e, (3 4)}, and G2 = {e}; and orbits ∆1 = {1, 2} and ∆2 = {3, 4}.

Perturbing points in Rn We now need to define the map φ↑ : X → G used in the

definition of π↑. The map φ↑ is only uniquely defined on points x = (xi)i ∈ Rn all

of whose entries are distinct. We first perturb x slightly to get a point with this

property. Choose a perturbation vector ε which has all distinct entries, for example

ε = 1
2n
(1, 2, . . . , n). Let d = minxi ̸=xj{|xi − xj|} (choose d = 1 if all entries of x are

the same) and define x′ = x+ dε, which is guaranteed to have all entries distinct.

The entries of x′ have the same relative order, ie if x′i ⩽ x′j then xi ⩽ xj , and φ↑

depends only on this relative ordering of entries. Then we define φ↑(x) = φ↑(x
′)

where φ↑(x
′) is defined below.

The ascending projection map We define a sequence of permutations gi ∈ G

for 1 ⩽ i ⩽ k as follows. Assume g1, . . . , gi−1 have already been found. Gi−1 acts

transitively on∆i, choose j ∈ ∆i such that the jth entry of (gi−1 · · · g1)·x′ is minimal

among those entries indexed by ∆i. Choose gi ∈ Gi−1 such that j ·gi = g−1
i (j) = bi.

Now define φ↑(x
′) := gk · · · g1, note the choice of the gi’s is not unique, but we show

in Section 8.3.6 that φ(x′) is uniquely defined.

Section 8.3 is devoted to the proof of the following Theorem which says that

the map we have defined is a projection onto a fundamental domain.
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THEOREM 8.5: Define π↑ : Rn → Rn by π↑(x) = φ↑(x) · x, and let F be the interior of

its image. Then F is a fundamental domain for G acting on Rn. Given a choice of base B

and perturbation vector ε, the projection π↑ is uniquely defined.

Example 8.6. For G = Sn, let B = (1, 2, . . . , n− 1), so that Gi = Sym(i+ 1, . . . , n)

and ∆i = {i, . . . , n}. Fixing x′ ∈ X and following the algorithm above: g1 ∈ G0 =

Sn is a permutation which moves the smallest entry indexed by ∆1 = {1, . . . , n}

to the first entry indexed by b1 = 1. Repeating this for each i up to n− 1, gi moves

the ith smallest entry of x′ to the ith position. The result is that (gn−1 · · · g1) ·x′ has

its entries ordered from smallest to largest.

8.1.2 Other combinatorial projection maps

There are three natural variations of the combinatorial projection map π↑ we de-

fine above which may be more suited to specific applications. We called that pro-

jection an ascending projection. The variations are a descending projection π↓, and

ascending and descending averaging projections π↑av and π↓av. These projections

each have their own version of Theorem 8.5 whose proof is essentially identical.

The descending projection is defined via φ↓, which differs from φ↑ only when

we define gi. In this case Gi−1 acts transitively on ∆i, and we choose j ∈ ∆i such

that the jth entry of (gi−1 · · · g1) · x′ is maximal among those entries indexed by

∆i. Choose gi ∈ Gi−1 such that j · gi = g−1
i (j) = bi. If the input data for the

machine learning algorithm consisted of vectors containing non-negative entries

including many zeros, the descending projection in some sense prioritises the non-

zero entries, so may yield different results.

For the averaging projections, assume that G = H1 ×H2 is a direct product of

groups Hj ⩽ Snj
which acts on Rn1 ⊗ Rn2 by letting H1 act on the first factor and

H2 act on the second. In this case, identify N with the set of pairs {(l,m) | 1 ⩽ l ⩽
n1, 1 ⩽ m ⩽ n2}. Define a transformation µ : Rn1 ⊗ Rn2 → Rn1 ⊗ Rn2 by

µ : (xℓm)ℓm 7→
(

1

n1

(x1m + x2m + · · ·+ xn1m) +
1

n2

(xℓ1 + xℓ2 + · · ·+ xℓn2)

)
ℓm

.

Thinking of (xℓm)ℓm as a matrix, notice this is a G-equivariant linear map which

replaces each entry of (xℓm)ℓm by the sum of the averages of the entries in its row
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and column. Now for any x ∈ Rn1 ⊗ Rn2 we define

φ↑av(x) = φ↑ (µ(x)
′) and φ↓av(x) = φ↓ (µ(x)

′) .

These definitions generalise to the caseG =
∏r

j=1Hj acting on
⊗r

j=1 Rnj component-

wise, where Hj ⩽ Snj
. One might wish to use an averaging projection if, for ex-

ample, one of the Hj’s is trivial, in which case a non-averaging projection ignores

most of the entries, since they are not in any of the orbits ∆i. This is the case in

the application discussed in Section 7.4.3.

Example 8.7. Let G = Z3 × S3 ⩽ S3 × S3 act on R3 ⊗ R3, thought of as the set of

3×3matrices, by cyclically permuting the rows and freely permuting the columns.

In this case let N = {(`,m) | 1 ⩽ ` ⩽ 3, 1 ⩽ m ⩽ 3} and construct a base. Let

b1 = (1, 1) whose stabiliser is G1 = {1} × Sym({2, 3}), and the orbit of b1 under

G0 = G is ∆1 = N . Now (2, 1) and (3, 1) are both fixed by G1 and so should not

be the next element of the base. Choose b2 = (1, 2). Then G2 = {1} × {1} and

the orbit of b2 under G1 is ∆2 = {(1, 2), (1, 3)}. Since G2
∼= {1} we are done and

B = ((1, 1), (1, 2)).

Let x′ = (x′ℓm)ℓm be a 3× 3 matrix whose entries are distinct, we want to com-

pute φ↑(x
′). Let (p1, q1) ∈ ∆1 = N be the pair such that x′p1q1 is the minimal entry.

Then we can choose g1 = (s1, (1 q1)) ∈ Z3 × S3 where

s1 =


(1) p1 = 1

(1 2 3) p1 = 2

(1 3 2) p1 = 3

∈ Z3

Now let g1 · x′ = (x′′ℓm)ℓm, and let (1, q2) ∈ ∆2 = {(1, 2), (1, 3)} minimise x′′1q2 .

Define g2 = ((1), (2 q2)) ∈ G1 and φ↑(x
′) = g2g1.

Combinatorially we can describe the projection π↑ as follows: transport the

smallest entry of x′ to the top left corner by cyclically permuting rows and freely

permuting columns. Then order columns 2 and 3 so that the entries in the first

row increase.

As an example, consider the matrix x and perturbation matrix ε

x =

5 3 3
4 0 0
3 5 1

 , ε =
1

18

1 2 3
4 5 6
7 8 9

 .
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Then

x′ = x+ ε =
1

18

91 56 57
76 5 6
61 98 27

 .

We can now apply π↑(x) = φ↑(x
′) · x in the two step process described above:

1

18

91 56 57
76 5 6
61 98 27

 g17−→ 1

18

 5 76 6
98 61 27
56 91 57

 g27−→ 1

18

 5 6 76
98 27 61
56 57 91

 = π↑(x
′)

x =

5 3 3
4 0 0
3 5 1

 g17−→

0 4 0
5 3 1
3 5 3

 g27−→

0 0 4
5 1 3
3 3 5

 = π↑(x).

Similarly

π↓(x) =

5 3 1
3 5 3
0 4 0

 .

We can also compute the averaging versions of these projections. Applying µ we

get

µ(x) =
1

3

23 19 15
16 12 8
21 17 13

 .

Hence,

π↑av(x) =

0 0 4
1 5 3
3 3 5

 , and π↓av(x) =

5 3 3
4 0 0
3 5 1

 .

8.1.3 Examples of combinatorial projection maps

In this Section we list combinatorial projection maps for several common exam-

ples of permutation groups G ⩽ Sn. Notice that in each of the four examples

of concrete groups below, implementation via a suitable sorting function circum-

vents the need to perturb inputs initially.

The symmetric group If G = Sn, let N = {1, . . . , n} and we can choose the base

B = (1, 2, . . . , n− 1). The ascending projection π↑(x) permutes the entries so that

they increase from left-to-right, and the descending projection π↓(x) permutes the

entries so that they decrease.
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The alternating group If G = An < Sn is the group of even permutations, we

can choose B = (1, 2, . . . , n− 2) and the ascending (respectively descending) pro-

jection permutes the entries of x so that the first n−2 entries increase (respectively

decrease) from left-to-right, and the last two entries are greater than or equal to all

the other entries. If x contains repeated entries then the last to entries can also be

ordered to be increasing (respectively decreasing); otherwise their relative order

depends on whether the permutation which maps i 7→ #{1 ⩽ j ⩽ n | xj ⩽ xi} for

1 ⩽ i ⩽ n, is an even or odd permutation.

The cyclic group If G = Zn ⩽ Sn is the cyclic group generated by the permu-

tation (1 2 · · · n), we can choose the base B = (1). The ascending (respectively

descending) projection cyclically permutes the entries of x so that the first entry

is less (respectively greater) than or equal to all other entries of x.

The dihedral group If G = Dihn ⩽ Sn is the dihedral group generated by

s1 = (1 2 · · · n) and s2 = (2 n)(3 (n− 1))(4 (n− 2)) · · · ,

we can choose baseB = (1, 2). The ascending (respectively descending) projection

cyclically permutes the entries of x via s1 so that the first entry is less (respectively

greater) than or equal to all other entries of x, and then if the final entry is less

(respectively greater) than the second entry, it applies the permutation s2.

Products of groups acting on products of spaces Suppose G =
∏r

j=1Hj where

Hj ⩽ Snj
acts on

⊕r
j=1 Rnj by each Hj acting by permutations on the correspond-

ing spaceRnj and trivially everywhere else. LetBj =
(
b
(1)
j , . . . , b

(kj)
j

)
⊂ {1, . . . , nj} =

Nj be a base for Hj acting on Rnj , then

B =
(
b
(1)
1 , . . . , b

(k1)
1 , b

(1)
2 , . . . , b

(k2)
2 , . . . , b(1)r , . . . , b(kr)r

)
is a base for G. Let πj↑ : Rnj → Rnj be the ascending projection corresponding

to Bj . Then define π↑ =
⊕r

j=1 πj↑, to be the projection which equals πj↑ when

restricted to Rnj . Similarly π↓ =
⊕r

j=1 πj↓.
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Products of groups acting on tensors of spaces Suppose G =
∏r

j=1Hj where

Hj ⩽ Snj
acts on

⊗r
j=1 Rnj by each Hj acting by permutations on the jth compo-

nent of
⊗r

j=1 Rnj , and trivially on the other components. For each 1 ⩽ j ⩽ r let

Bj =
(
b
(1)
j , . . . , b

(kj)
j

)
⊂ {1, . . . , nj} = Nj be a base for Hj acting on Rnj , and fur-

thermore (for convenience) assume that b(1)j = 1. Then choose B ⊂
∏r

j=1Nj =: N

to be

B =
(
(1, . . . , 1),

(
b
(2)
1 , 1, . . . , 1

)
, . . . ,

(
b
(k1)
1 , 1, . . . , 1

)
,

... ...(
1, . . . , 1, b(2)r

)
, . . . ,

(
1, . . . , 1, b(kr)r

))
,

where a 1 in the jth position of an element of B should be thought of as b(1)j . Sup-

pose x = (xℓ1···ℓr)ℓ1···ℓr ∈
⊗r

j=1 Rnj , and let x′ be defined as in Section 8.1. Choose

(m1, . . . ,mr) ∈ N to be the index in the G-orbit of 1 = (1, . . . , 1) with minimal

entry in x′. For 1 ⩽ j ⩽ r define x′j := (x′m1···ℓj ···mr
)1⩽ℓj⩽nj

∈ Rnj , which is the

restriction of x′ to the Rnj -vector containing the entry x′m1···mj ···mr
. Then define

φ↑ :
⊗r

j=1 Rnj → G : x 7→ (φ1↑(x
′
1), . . . , φr↑(x

′
r)),

where φj↑ : Rnj → Hj is the function defined for Hj acting on Rnj , and similarly

define φ↓(x). Then as before, π↑(x) := φ↑(x) · x and π↓(x) := φ↓(x) · x.

8.2 Algorithm to compute combinatorial projections

In this Section we give algorithms to compute combinatorial projection maps for

permutation group actions and analyse the time and space complexity of these

algorithms. These work for any permutation group G, although they are not the

ones we used in Section 7.4 which employed more efficient ad hoc methods de-

scribed in Section 8.1.3. The general algorithms here fall into two parts: first are

the algorithms which are applied as a one-off to compute data like a base and the

orbits ∆i; and which run inO(k2n3) time, andO(n2 logn) space, where n is the di-

mension of the input space and k is the size of the base. Second are the algorithms

which actually implement the projection π↑ and which must therefore be run for
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each input datum. They do this in O(k2n2) time and O(n2 logn) space. Since π↑
merely permutes the entries of a datum, it does not change the space required to

store the input data.

Throughout we maintain the same notation as before, where we are working

with a subgroup of Sn which acts by permuting the coordinates of Rn indexed by

N = {1, . . . , n}. As initial data we assume we have a subgroup G of Sn given by a

generating set of permutations. Moreover, we assume that these permutations are

given in cycle or one-line notation, so that each can be stored in O(n logn) space,

and multiplying two permutations together can be performed in O(n) time. Sim-

ilarly, given x ∈ Rn and a permutation g, the point g · x can be computed in O(n)

time.

8.2.1 Computing initial data

We make use of the method of representing permutation groups introduced by

Mark Jerrum in [67], which we summarise. First we explain the notation. We work

with directed simple graphs which have N as their vertex set. If their directed

edge set isE, we write the graph as a pair (N,E). We use `−1`2 to denote an edge

which starts at `1 and ends at `2.

Definition 8.8. A (directed) path in (N,E) is a sequence of vertices `0`1 · · · `m such

that `j`j+1 ∈ E for each j. Such a path is said to have length m ⩾ 0.

A directed graph is called a branching if it contains no paths of length m ⩾ 1

with the same start and end points, and if each vertex has at most one incoming

edge. If (N,E) is a directed graph, an edge labelling is a map ω : E → Sn : bℓbm 7→

ωℓm which assigns to each edge a permutation of N . This labelling extends to a

labelling of paths by setting ωP = ωbℓ0bℓ1 · · ·ωℓm−1ℓm ∈ Sn, where P = `0`1 · · · `m.

Definition 8.9. Let G ⩽ Sn be a permutation group. A Jerrum representation of

G is an edge labelled directed graph Υ(G) = (N,E, ω) satisfying the following

properties:

1. Υ is a branching

2. For all bℓbm ∈ E
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(a) ` < m and ` ⩽ k

(b) ωbℓbm ∈ Gℓ−1

(c) bℓ · ωbℓbm = bm

3. The set Ui := {ωP | P is a path in Υ starting at bi} is a right transversal for

Gi in Gi−1 for each 1

ellei ⩽ k.

THEOREM 8.10 (Theorem 3.3 and Section 4 of [67]): Let G ⩽ Sn be a permutation

group given by a set of generators, then there is an algorithm which yields a small base

B = (b1, . . . , bk) for G (see Section 8.2.3 for a quantitative discussion of what a small

base is) together with a Jerrum representation. This algorithm runs in in O(k2n3) time

and O(n2 logn) space. It also computes the orbits ∆i = bi ·Gi−1 for 1 ⩽ i ⩽ k.

The algorithm presented in [67] in fact assumes that (1, 2, · · · , n) has been cho-

sen a priori to be the base, but it is straightforward to amend the algorithm to com-

pute a more efficient base using the greedy algorithm mentioned at the start of

Section 8.3.3, compare with [11].

8.2.2 Applying π↑ to input data

Fix a permutation group G and let Υ = Υ(G) be a Jerrum representation for G.

First we prove a useful characterisation of the orbit ∆i+1.

LEMMA 8.11: The orbit ∆i is the set of bℓ ∈ N such that there exists a path P in Υ which

starts at bi and ends at bl.

Proof. Note that by induction onm, for any pathP = bℓ0 · · · bℓm , (2) in Theorem 8.10

generalises to say

(a) `0 < `m and `m−1 ⩽ k

(b) ωP ∈ Gℓ0−1

(c) bℓ0 · ωP = bℓm .
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If P starts at bi, then ωP ∈ Gi−1 and bi · ωP = bℓ so bℓi. Conversely, if bℓ ∈ ∆i, there

is some g ∈ Gi−1 such that bi · g = bl. Note that the cosets of Gi in Gi−1 are exactly

the sets of the form {g ∈ Gi−1 | bi · g = b} for fixed b ∈ ∆i. Indeed g, g′ ∈ Gi−1

are in the same coset of Gi if and only if bi · g′ = bi · g. Since Ui is a complete set

of representatives, it contains an element from every coset, and hence an element

which maps bi to bℓ. Call this element ubℓ , then by definition there is some path P

which starts at bi such that ubℓ = ωP , and by the observation above, the end point

of P must be bℓ. □

With this Lemma we can give an algorithm to perform the main task in com-

puting π↑, computing φ↑ as a product of permutations gi ∈ Gi−1.

PROPOSITION 8.12: Given x′ ∈ Rn, all of whose entries are distinct, and a Jerrum repre-

sentation Υ = Υ(G) for G, there is an algorithm to compute φ↑(x
′) in O(k2n2) time and

O(n2 logn) space.

Data: A point x′ ∈ Rn, a Jerrum representation Υ = Υ(G), and the orbits
∆i.

Result: φ↑(x
′).

1 for 1 ⩽ i ⩽ k do // Loop runs k times
33 Set j to be the index in ∆i such that x′j ⩽ x′ℓ for all ` ∈ ∆i ; // This is

the current working vertex in Υ
4 Set gi = e; // This accumulates edge labels from Υ
66 while j 6= bi do // Loop runs at most |∆i| times
88 Set ` to be the unique index in ∆i such that `j is an edge of Υ;

1010 Set gi = ωℓjgi;
11 Set j = `;
12 end
1414 Set x′ = gi · x′;
15 end
1717 Set φ↑(x

′) = gk · · · g1;

Algorithm 1: Computing φ↑(x
′) given a Jerrum representationΥ and the orbits

∆i.

Proof. We use Algorithm 1. Recall the definition of φ↑(x
′). Assume g1, . . . , gi−1

have already been found, Gi−1 acts transitively on ∆i, choose j ∈ ∆i such that the

jth entry of (gi−1 · · · g1) ·x′ is minimal among those entries indexed by ∆i. Choose

gi ∈ Gi−1 such that j · gi = g−1
i (j) = bi. Then define φ↑(x

′) := gk · · · g1.
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The job of finding each gi is made easy by Lemma 8.11, since we just need to

find a pathP inΥ joining bi to j, which is guaranteed to exist. SinceΥ is branching,

each vertex has at most one incoming edge, and hence starting from j and working

backwards we are guaranteed to reach bi. Making note of each edge label as we

construct P , we can choose gi = ωP . This is achieved by the loop starting in Line 6.

We consider the time complexity of this algorithm. Following [67], Υ can be

represented by an n × n array, whose pq-entry is NULL if pq is not an edge of Υ,

and ωpq otherwise. Finding ` in Line 8 requires searching the jth column of this

array for the unique non-NULL entry, whose index row index is `, and so takes

O(n) steps. As mentioned above Line 10 also takes O(n) steps, so the while loop

at Line 6 takes O(n|∆i|) steps.

Finding j in Line 3 requires O(|∆i|) steps, searching through each entry of

x′ indexed by ∆i and comparing it with the current minimal entry found; while

Line 14 takesO(n) steps. Thus the dominant step in the main for loop is the while

loop. Overall then this for loop takes O(kn
∑k

i=1 |∆i|) steps, which is greater than

the O(kn) steps to compute Line 17. Noting that |∆i| ⩽ n, this algorithm runs in

O(k2n2) time.

As for space, Υ is an n2 array, containing at most n− 1 non-NULL entries (since

the graph is has no cycles, its number of edges is bounded by n−1), each of which

takes O(n logn) space to store. An efficient encoding can then use O(n2 logn)

space. The other significant space cost is storing the gi’s. This takes O(kn logn)

which is at most O(n2 logn). □

THEOREM 8.13: Given x ∈ Rn, a perturbation vector ε, and a Jerrum representation Υ

for G, there is an algorithm to compute π↑(x) in O(k2n2) time and O(n2 logn) space.

Proof. Algorithm 2 follows exactly the procedure outlined in Section 8.1. Line 8

dominates in terms of both time and space complexity. □

8.2.3 Final time complexity analysis

Naïvely one may assume that the size k of the base B is O(n), indeed this is the

case for G = Sn or An for example, but in practice we can do a lot better. Write
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Data: A point x ∈ Rn, a perturbation vector ε, a Jerrum representation
Υ = Υ(G), and the orbits ∆i.

Result: π↑(x).
1 if x ∈ R1 then
2 Set d = 1;
3 else
4 Set d = min{|xi − xj| | xi 6= xj};
5 end
6 Set x′ = x+ dε;
88 Compute φ↑(x

′); // Algorithm 1
9 Set π↑(x) = φ↑(x

′) · x;

Algorithm 2: Computing π↑(x) given a perturbation vector and initial data.

b(G) for the size of the smallest base for G, then in [11] Blaha showed that the

greedy algorithm used in Theorem 8.10 to find a base yields a base whose size k

is O(b(G) log logn).

When looking at permutation groups, it is natural to focus on the case of so-

called primitive permutation groups, ie subgroups G ⩽ Sn which act transitively

on N = {1, . . . , n} such that there are no non-trivial G-invariant partitions. This

is because arbitrary permutation groups can be built up out of primitive ones. In

this setting Liebeck proved the following in [74].

THEOREM 8.14: LetG be primitive and not Sn orAn, then there is some absolute constant

c such that b(G) < c
√
n.

It follows that in this case, the base found above has sizeO(
√
n log logn). Com-

bining this with the observation in Section 8.1.3 that for Sn andAn, π↑ can be com-

puted using a sorting algorithm, we get the following.

THEOREM 8.15: Let G ⩽ Sn be primitive, then either

• G = Sn or An: no initial data needs to be computed and π↑ can be computed in

O(n2) time per datum (using worst case for quicksort); or

• Initial data can be computed in O(n4(log logn)2) time, and π↑ can be computed in

O(n3(log logn)2) time per datum.
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8.3 Proof of Theorem 8.5

The idea of the proof is as follows. In Section 8.3.1, we outline an equivalence be-

tween subgroups ofSn acting onRn by permuting coordinates, and them acting on

Sn by multiplication. This provides a dictionary between certain combinatorially

defined fundamental domains and sets of coset representatives satisfying simple

algebraic properties, see Proposition 8.22. We then outline the work from [36] in

Section 8.3.3 which gives an algorithm to find a set of coset representatives for an

arbitrary subgroup of Sn. The main work is then to show this algorithm, with

modifications, can produce a set of coset representatives with the desired alge-

braic properties so that it corresponds to a fundamental domain. This culminates

in Corollary 8.31. Finally we show in Proposition 8.32 that the algorithm outlined

in Section 8.1 indeed produces a projection onto this fundamental domain.

8.3.1 Actions on Rn and Sn

Recall we have the group Sn acting on Rn on the left by s·(xi)i =
(
xs−1(i)

)
i
. We also

have the normal action of Sn on itself on the left by group multiplication. Here

we show that in some sense these actions are equivalent.

Let x ∈ Rn be a point, all of whose entries are distinct, and notice the set of

such points is open and dense in Rn. Define a function which changes the ith

entry xi of x to the integer #{1 ⩽ j ⩽ n | xj ⩽ xi}. The result is a list of the

integers 1, . . . , n in the same relative order as the entries of x, and we denote the

set of all such points C. We can think of C as a discrete subset of Rn, and the

left action of Sn on Rn restricts to a left action on C. Notice also that this map

Rn
dist := {x ∈ Rn | all entries are distinct} → C is continuous. In other words the

set of connected components of Rn
dist are in one-to-one correspondence with C.

Indeed each component contains a point in C, its representative point.

Definition 8.16. We call these connected components chambers; given c ∈ C we

write [c] ⊂ Rn for the corresponding chamber.

The following is straightforward to check.
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(2,1,3,4)

(1,2,3,4)(1,3,2,4)

(3,1,2,4)

(3,2,1,4) (2,3,1,4)

(2
,1
,4
,3
)

(1,2,4,3)(1,3,4,2)

(3
,1
,4
,2
)

(3,2,4,1) (2,3,4,1)

(2,4,1,3)

(1,4,2,3)(1,4,3,2)

(3,4,1,2)

(1,2,3,4) (2,4,3,1)

(4,2,1,3)

(4,1,2,3)(4,1,3,2)

(4,3,1,2)

(4,3,2,1) (4,2,3,1)

Figure 8.1: On the left is boundary of a 3-simplex, each small triangle corresponds to the
intersection of this with a chamber. On the right the picture has been stereographically
projected to the plane for the purposes of illustration, and each chamber is labelled by the
representative element of C.

LEMMA 8.17: Each chamber is a fundamental domain for the action of Sn on Rn.

The action of Sn on Rn preserves an (n− 1)-simplex in the orthogonal comple-

ment of the vector (1, . . . , 1). In Figure 8.1 we show the 3-simplex preserved by S4

and use it to visualise the 24 = #S4 chambers in this case.

On the other hand, we can view each element of C as a permutation in Sn

written in in-line notation. This means if c = (ci)i, as a permutation it sends i to ci
for each i ∈ {1, . . . , n}. Thus Sn is in one-to-one correspondence with C. In fact, it

is better in our situation to modify this correspondence by inverting elements of

Sn via the map ρ : Sn → C : s 7→ (s−1(i))i. The equivalence of the left action of Sn
on Rn and the left action on itself comes in the following form. Let s, t ∈ Sn, and

consider the action of s on ρ(t):

s · ρ(t) = s · (t−1(i))i = (t−1(s−1(i)))i = ((st)−1(i))i = ρ(st) = ρ(s · t).

Given any subgroup G ⩽ Sn, the map ρ defines an equivalence between G

acting on Rn, which restricts to an action of G on C, and G acting on Sn by left

multiplication. We can use this equivalence to convert a set of right coset repre-

sentatives for G in Sn into a complete set of orbit representatives for G acting on

Rn.
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PROPOSITION 8.18: Let R be a set of right coset representatives for G ⩽ Sn, then F =⋃
r∈R [ρ(r)] is a complete set of orbit representatives for G acting on Rn, where [ρ(r)] is

the closure of the chamber containing ρ(r).

Proof. Since Rn
dist is dense in Rn and G acts by continuous maps which leave Rn

dist

invariant as a set, it suffices to show that
⋃
r∈R[ρ(r)] is a complete set of orbit rep-

resentatives for G acting on Rn
dist. In fact G simply permutes the components of

Rn
dist so it suffices to show that

⋃
r∈R ρ(r) is a complete set of orbit representatives

for the induced action of G on C.

But now, ρ is a bijection which exhibits an equivalence between the action of

G on C and the action of G on Sn so we just need to show that R is a complete set

of orbit representatives for G acting on Sn. The orbits of this action are precisely

the right cosets of G, which completes the proof. □

8.3.2 Gallery connectedness and fundamental domains

Given a set of right coset representatives R for G ⩽ Sn, the interior of F as de-

fined in the Proposition is not, in general, a fundamental domain because it is not

connected. We can reinterpret connectedness in terms of algebraic properties of

R. First some geometric definitions.

Definition 8.19. Let c, c′ ∈ C be distinct, we say the chambers [c] and [c′] are adja-

cent if [c]∩ [c′] has codimension 1. A gallery is a sequence of chambers [c1], . . . , [ck]

such that consecutive chambers are adjacent. A set of chambers is called gallery

connected if any two distinct chambers in the set can be connected by a gallery

which is completely contained in the set. As a shorthand, we sometimes call a

subset C ′ ⊂ C gallery connected if the set {[c] | c ∈ C ′} is gallery connected.

It turns out that the decomposition of Rn
dist into chambers corresponds to the

chamber system of Sn acting on its Coxeter complex, about which we do not elab-

orate here, but the interested reader should consult [16]. The upshot of this view-

point is two characterisations of adjacency of chambers.

LEMMA 8.20: Let c 6= c′ ∈ C and define s = ρ−1(c), s′ = ρ−1(c′). Then the following are

equivalent:
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1. The chambers [c] and [c′] are adjacent.

2. There is 1 ⩽ j ⩽ n− 1 such that s′ = s(j j+1), where (j j+1) is a transposition

in Sn.

3. The vectors c and c′ differ by swapping exactly two entries which are consecutive

integers.

Proof. The equivalence of (1) and (2) is proved in Theorem I.5A of [16]. To see the

equivalence of (2) and (3), notice that ρ(s(j j+1)) = ((s(j j+1))−1(i))i =: (c
′
i)i. For

i 6∈ {j, j + 1}, c′i = s(i) = ci (where c := (ci)i), whereas c′j = cj+1 and c′j+1 = cj . □

The equivalence of (1) and (3) for the example of S4 can be seen in (Figure 8.1).

We use this characterisation to prove Proposition 8.30 which is key to showing that

the image of π↑ is connected. We are now in a position to upgrade Proposition 8.18

so that it produces a fundamental domain for the action of G.

Definition 8.21. We define a right transversal of G ⩽ Sn to be a minimal set

of right coset representatives (ie a set containing exactly one element from every

right coset).

PROPOSITION 8.22: Let R ⊂ Sn be a right transversal for G ⩽ Sn such that ρ(R) is

gallery connected. Then F , the interior of
⋃
r∈R [ρ(r)], is a fundamental domain for G

acting on Rn.

Proof. By the definition, if [c] and [c′] are adjacent, then the interior of [c] ∪ [c′] is

connected. By induction on the length of galleries in {[ρ(r)] | r ∈ R} it follows

that F is connected. It is also open by definition.

By Proposition 8.18 we know that F is a complete set of orbit representatives

forG. Finally, suppose that someG-orbit meets F in at least two points, say x and

x′, and g ∈ G is such that g · x = x′. Since the G-action permutes the chambers,

there are two possibilities:

1. There are coset representatives r, r′ ∈ R such that x ∈ [ρ(r)] and x′ ∈ [ρ(r′)].

2. There are coset representatives r1 6= r2, r
′
1 6= r′2 ∈ R such that x ∈ [ρ(r1)] ∩

[ρ(r2)] and x′ ∈ [ρ(r′1)] ∩ [ρ(r′2)].



242 PROOF OF THEOREM 8.5

In the first case we must have that g · [ρ(r)] = [ρ(r′)], in which case it follows

from Lemma 8.17 and the fact that g 6= 1, that r 6= r′. But then by the equivalence

of the action with the action on Sn, we have that g · r = gr = r′ and r and r′

represent the same right coset of G. This contradicts the assumption that R is

minimal. In the second case, we can similarly argue that {r1, r2} 6= {r′1, r′2} but

g · {r1, r2} = {r′1, r′2}, again contradicting the minimality of R. In either case g

cannot exist. □

8.3.3 An algorithm to find coset representatives

In this Section we summarise the main construction of [36] which gives an efficient

algorithm to compute a right transversal for an arbitrary subgroup G ⩽ Sn. The

first step is to find a base B ⊂ N for G ⩽ Sn. Set B0 = (), the empty tuple. We

assume that we have already constructed Bi−1 and computed Gi−1. If Gi−1 = {1},

B = Bi−1 is a base and we are done. Otherwise, pick bi ∈ N with the largest orbit

under Gi−1 and let Bi be Bi−1 with bi appended.

Let B = (b1, . . . , bk) be a base and recall we define G0 = G and Gi = Gi−1 ∩

StabG(bi) for 1 ⩽ i ⩽ k. We also write ∆i = bi ·Gi−1 for the orbit of bi under Gi−1.

Recursively construct a partition Πi of N , starting with Π0 = {N}. Denote by Γi

the element of Πi−1 which contains bi. One can check by induction that Γi contains

∆i as a subset. Define Πi by replacing Γi in Πi−1 by the non-empty subsets from

the list: {bi}, ∆i − {bi}, and Γi −∆i.

Now let Ui be a right transversal for the group Sym(∆i) × Sym(Γi − ∆i) in

Sym(Γi), where Sym(Ω) is the group of permutations of the set Ω (in the next

section we fix a particular choice for Ui), and finally let

Hi =
∏
Γ∈Πi

Sym(Γ).

Then define R = HkUkUk−1 · · ·U1, where for subsets A,B ⊂ Sn, AB := {ab | a ∈

A, b ∈ B}.

THEOREM 8.23 ([36] §4): The set R is a right transversal for G ⩽ Sn.
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8.3.4 Gallery connected sets of coset representatives

We now show how the method described above can be used to construct a right

transversal R for G such that ρ(R) is gallery connected. This is done by choosing

a suitable base B, possibly re-indexing the set N , and choosing appropriate right

transversals Ui for Sym(∆i) × Sym(Γi − ∆i) in Sym(Γi). We prove Theorem 8.5

assuming B and N have been chosen in this way, and then in Section 8.3.6 show

that the assumptions on B and N can be dropped.

We described how to find a base forG by appending more and more elements

of N to B = () until Gk = {1} in Section 8.3.3. The first assumption we make is as

follows.

Assumption 8.24. Until the final proof of Theorem 8.5 in Section 8.3.6, assume that

each new bi is minimal in the orbit bi ·Gi−1 with respect to the normal ordering on

N . We call such a base orbit minimal.

We use the following Lemma to build gallery connected sets out of other gallery

connected sets.

LEMMA 8.25: Let A1, . . . , Aℓ be subsets of Sn so that each contains the identity permu-

tation (1), and ρ(Ai) is gallery connected for each i. Then ρ(A1A2 · · ·Aℓ) is gallery con-

nected.

Proof. Notice that A1A2 contains (1)(1) = (1). Let a ∈ A1A2, and choose a1 ∈ A1

and a2 ∈ A2 such that a = a1a2. Since ρ(A1) and ρ(A2) are gallery connected, there

are galleries pa1 ⊂ ρ(A1) and pa2 ⊂ ρ(A2) which connect ρ((1)) to ρ(a1) and ρ((1))

to ρ(a2) respectively. Then a1 · pa2 connects ρ(a1) to ρ(a1a2) in ρ(a1A2), and the

concatenation pa1 ∗ (a1 · pa2) is a gallery which connects ρ((1)) to ρ(a) in ρ(A1A2).

Call this gallery p̃a, its construction is illustrated in Figure 8.2. Now given a, a′ in

A1, A2 the gallery p̃−1
a ∪ p̃a′ (where p̃−1

a indicates p̃a traversed in reverse) connects

ρ(a) to ρ(a′) in ρ(A1A2), so ρ(A1A2) is gallery connected—the claim follows by

induction on `. □
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Figure 8.2: Building a gallery in
ρ(A1A2).

From the definition of R in the previous

section, if we show that Hk and each of the

Ui’s satisfy the hypotheses of this Lemma,

then it follows that R is gallery connected.

We first consider Hk. Notice that in fact, if

Πk = {N1, . . . , Nℓ} then

Hk =
ℓ∏
i=1

Sym(Ni)

= Sym(N1)Sym(N2) · · · Sym(Nℓ)

can be written as a product of sets, again as in the Lemma. Each Sym(Ni) con-

tains (1), so we just need ρ(Sym(Ni)) to be gallery connected for each i. It follows

immediately from Lemma 8.20 that this is the case if and only if Ni is a sequence

of consecutive digits from N .

In general this is not the case, however it can be readily achieved by re-indexing

the set N . In fact we can do this so that each part of each partition Πi is a set of

consecutive digits. This aids in showing that ρ(Ui) is gallery connected.

LEMMA 8.26: We can re-index N so that bi remains minimal in ∆i and each part of Πi is

a set of consecutive digits for 1 ⩽ i ⩽ k.

Proof. We do induction on i: note that in Π0 = {N} the only part is a set of consec-

utive numbers. Assume that each element of Πi−1 is a set of consecutive digits, in

particular Γi ∈ Πi−1 is a set of consecutive digits. Assume one of the three subsets

{bi}, ∆i − {bi} or Γi −∆i is non-empty and does not consist of consecutive digits,

then by the minimality of bi both ∆i − {bi} and Γi − ∆i must be non-empty and

not consist of consecutive digits. Re-index the elements of Γi so that overall the

same set of digits is used, but now bi is the smallest, the next smallest digits are

all in ∆i − {bi}, and the remaining digits are in Γi −∆i. □

Assumption 8.27. Until the final proof of Theorem 8.5 in Section 8.3.6, assume

that N is indexed such that each part of the partition Πi for 1 ⩽ i ⩽ k is a set of

consecutive numbers.



COMBINATORIAL PROJECTION MAPS 245

8.3.5 Choosing a right transversal Ui

Finally we want to choose the right transversals Ui for Sym(∆i)× Sym(Γi−∆i) in

Sym(Γi). Write ∆i = {d1, d2, . . . , dm}, and Γi −∆i = {dm+1, dm+2, . . . , dm+m′}. For

0 ⩽ ` ⩽ min{m,m′}, choose dj1 < dj2 < · · · < djℓ and dm+j′1
< dm+j′2

< · · · < dm+j′ℓ
,

and consider the product of transpositions

(dj1 dm+j′1
)(dj2 dm+j′2

) · · · (djℓ dm+j′ℓ
) ∈ Sym(Γi). (8.1)

Define Ũi to be the set of all such products for any choice of `, and indices jk and

j′k.

LEMMA 8.28: ([36] Lemma 2) Ũi is a right transversal for Sym(∆i)× Sym(Γi −∆i) in

Sym(Γi).

Let ũ ∈ Ũi have the form given in (8.1). If ` = 0, then ũ is the identity and

thinking of it as an element of Sn ⩾ Sym(Γi), we get ρ((1)) = (1, . . . , n). More

generally ρ(ũ) is the result of swapping each of the pairs djk ↔ dm+j′k
in this vector,

for 1 ⩽ k ⩽ `. Let gũ ∈ Sym(∆i) × Sym(Γi − ∆i) be the permutation such that

ρ(gũ·ũ) has its firstm entries in increasing order, and its lastm′ entries in increasing

order. Define Ui = {gũ · ũ | ũ ∈ Ũi}.

LEMMA 8.29: Ui is a right transversal for Sym(∆i)× Sym(Γi −∆i) in Sym(Γi).

Proof. Ũi contains exactly one element from each right coset of Sym(∆i)×Sym(Γi−

∆i) in Sym(Γi). For ũ ∈ Ũi, the element gũ · ũ = gũũ lies in the same right coset

as ũ since gũ ∈ Sym(∆i) × Sym(Γi − ∆i). Hence Ui contains exactly one element

from each right coset of Sym(∆i)× Sym(Γi −∆i) in Sym(Γi). □

We want to show that ρ(Ui) is gallery connected, and for that we use the re-

indexing of N provided by Lemma 8.26. Recall that bi is the ith element of the
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base B; it follows from our construction of Ui that

ρ(Ui) = {(1, . . . ,bi − 1,

indexed by ∆i︷ ︸︸ ︷
c1, . . . , cm ,

indexed by Γi−∆i︷ ︸︸ ︷
cm+1, . . . , cm+m′ , bi +m+m′, . . . , n) |

cj ∈ Γi = {bi, bi + 1, . . . , bi +m+m′ − 1} for all 1 ⩽ j ⩽ m+m′,

c1 < · · · < cm, and cm+1 < · · · < cm+m′} (8.2)

Since this is notationally rather cumbersome, we abbreviate elements of ρ(Ui) by

(c1, . . . , cm | cm+1, . . . , cm+m′),

where the first ‘half’ consists of entries indexed by ∆i, and the second ‘half’ con-

sists of entries indexed by Γi −∆i.

PROPOSITION 8.30: LetG ⩽ Sn, B be an orbit minimal base, andN indexed so that each

part of Πi is a set of consecutive digits. Then the set ρ(Ui) is gallery connected.

Proof. To help simplify notation, we do not distinguish between points in C and

the chambers they represent. We show that ρ(Ui) is gallery connected by explicitly

constructing a gallery which joins an arbitrary chamber

c = (c1, . . . , cm | cm+1, . . . , cm+m′) ∈ ρ(Ui)

to the chamber corresponding to the identity in Ui,

ĉ = ρ((1)) = (bi, . . . , bi +m− 1 | bi +m, . . . , bi +m+m′ − 1).

Lemma 8.20 gives the condition for consecutive chambers in this gallery to be

adjacent: they must differ by swapping two entries which are consecutive integers.

Furthermore, we ensure this gallery remains in ρ(Ui) throughout. This implies

that after swapping the two entries, the two halves of c must remain properly

ordered. Taken together, this implies that the only swaps we can perform must

switch the position of an entry in the left half with one in the right half, and these

entries must be consecutive integers.

Let c ∈ ρ(Ui) be arbitrary, write ĉj = bi+ j− 1 for the jth entry of ĉ, and define

δ(c) =

(
m∑
j=1

cj − ĉj

)
−

(
m+m′∑
j=m+1

cj − ĉj

)
which measures the degree to which c and ĉ differ.
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Claim 1 δ(c) ⩾ 0.

Let j ⩽ m, then since the entries in the left half of c are ordered, distinct integers

greater than or equal to bi, cj ⩾ bi + (j − 1) = ĉj so each term in the first sum is

non-negative. Similarly, for j > m the entries in the right half of c are ordered,

distinct integers less than or equal to bi +m +m′ − 1, so cj ⩽ bi +m +m′ − 1 −

(m+m′− j) = bi+ (j − 1) = ĉj so each term in the second sum is non-positive. □

As a remark, it follows from this claim that δ equals the L1 distance between c

and ĉ. We perform a sequence of swaps as described above which have the effect

decreasing the value of δ(c). Since δ(c) = 0 implies that c = ĉ, the required gallery

can be constructed by induction on δ(c). Assume c 6= ĉ, and let j be the minimal

index such that cj 6= ĉj . Since the two halves of c are ordered, cj is in the left half.

Claim 2 cj′ := cj − 1 is in the right half of c.

Indeed suppose it is in the left half, then by the ordering on c, j′ < j, and by the

minimality of j, cj′ = ĉj′ = bi + j′ − 1. But then

ĉj 6= cj = cj′ + 1 = bi + (j′ + 1)− 1 = ĉj′+1,

so j 6= j′ + 1 since all entries of ĉ are distinct. But now cj′ < cj′+1 < cj (by the

ordering on c), which is contradiction since these entries are distinct integers, and

cj′ and cj differ by 1. □

Thus, cj and cj − 1 are entries in different halves of c which are consecutive

integers. Let c′ be the result of swapping these two entries in c, then

δ(c)− δ(c′) = ((cj − ĉj)− (cj′ − ĉj′))− ((cj′ − ĉj)− (cj − ĉj′))

= 2(cj − cj′) = 2 > 0

so performing the swap strictly decreases δ. By induction, there is a gallery in

ρ(Ui) joining c and ĉ, and hence ρ(Ui) is gallery connected. □

It follows directly from this Proposition, Theorem 8.23, and Proposition 8.22

that R as defined in Section 8.3.3 corresponds to a fundamental domain.
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COROLLARY 8.31: Let G ⩽ Sn, B be an orbit minimal base, and N indexed so that each

part of Πi is a set of consecutive digits. Let R be the right transversal for G constructed

above. Then F , the interior of
⋃
r∈R [ρ(r)], is a fundamental domain for G acting on Rn.

8.3.6 Completing the proof

We have two things to do to complete the proof of Theorem 8.5: first show that

the map π↑ as defined in Section 8.1 has image in F =
⋃
r∈R [ρ(r)], and therefore

indeed projects onto a fundamental domain, and then remove the assumptions of

orbit minimality and on how N is indexed.

PROPOSITION 8.32: LetG ⩽ Sn, B be an orbit minimal base, andN indexed so that each

part of Πi is a set of consecutive digits. Then the image of π↑ lies in
⋃
r∈R [ρ(r)].

Proof. It suffices to show that the image of Rn
dist lies in F =

⋃
r∈R [ρ(r)]. We claim

that
ρ(R) = {(cj)j ∈ C | for 1 ⩽ i ⩽ k, cbi ⩽ cj for all j ∈ ∆i}.

The definition of π↑ implies that the right hand side of this is the image of π↑|C , so

the Proposition follows immediately from this claim.

Call the set on the right hand side C ′, first we show that ρ(R) ⊆ C ′. By (8.2)

(note that the entries of (cj)j there are indexed differently there) we can see

ρ(Ui) ⊂ {(cj)j ∈ C | cbi ⩽ cj for all j ∈ ∆i}.

Since Ui ⊂ Sym(Γi), which fixes bi−1 for i ⩾ 2, one can inductively check from the

definition of ρ that ρ(Uk · · ·U1) ⊂ C ′. Similarly, in the partition Πk, each bi appears

as a singleton, so Hk also fixes bi for 1 ⩽ i ⩽ k, hence ρ(R) ⊆ C ′.

To establish the claim we just need to show that #C ′ = #ρ(R), since they are

finite sets this implies that they are equal as sets. On the one hand, since ρ is a

bijection, and using Lagrange’s Theorem

#ρ(R) = #R = #{right cosets of G in Sn} = #Sn/#G.

On the other hand, each condition ‘cbi ⩽ cj for all j ∈ ∆i’ decreases the size of C

by a factor of #∆i, so

#C ′ =
#C

#∆1 · · · #∆k

.
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Since C is the bijective image of Sn under ρ, #C = #Sn. By the Orbit-Stabiliser

Theorem, we also have

#∆i = #bi ·Gi−1 = #Gi−1/#StabGi−1
(bi) = #Gi−1/#Gi,

Where the last equality follows from the definition Gi = StabGi−1
(bi). Therefore

#∆1 · · · #∆k =
#G0

#G1

#G1

#G2

· · · #Gk−1

#Gk

=
#G0

#Gk

=
#G

#{1} = #G

Hence #C ′ = #ρ(R), which completes the proof. □

Proof of Theorem 8.5. Let N = {1, . . . , n}, and choose B a base for G ⩽ Sn, and ε

satisfying the conditions in Section 8.1. Let s ∈ Sn be a permutation ofN such that

Bs := B · s is an orbit minimal base, and each part of each partition Πs
i := Πi · s is

a set of consecutive digits. That s exists can be seen by first permuting k times so

that B is orbit minimal (note bi 6∈ ∆j for all j > i) and then applying Lemma 8.26.

Write bsi = bi · s so that Bs = (bs1, . . . , b
s
k).

LetGs = s−1Gs be the conjugate ofG by s in Sn, then for any g ∈ G andm ∈ N ,

(m · s) · gs = ((gs)−1s−1)(m) = (s−1g−1)(m) = (m · g) · s (8.3)

where gs = s−1gs. In other words, permuting by s and then acting by Gs is the

same as acting by G and then permuting by s. It follows that Gs
i := s−1Gis =

Gs
i−1 ∩ StabGs(bsi ), and ∆s

i := ∆i · s = bsi ·Gs
i−1.

Finally define φs↑ and πs↑ as in Section 8.1 with respect to Bs and ε. We claim

that for x′ as defined in Section 8.1, φs↑(x′) = (φ↑(x
′))s = gsx′ . Indeed by definition

φs↑(x
′) = g̃k · · · g̃1 where g̃i ∈ Gs

i such that ̃ · g̃i = bsi and ̃ ∈ ∆s
i is chosen such that

the ̃th entry of (g̃i−1 · · · g̃1) ·x′ is minimal among those entries indexed by ∆s
i . But

now ∆s
i = ∆i · s means ̃ = j · s (where j ∈ ∆i is the index found in the definition

of φ↑). Thus
bsi = bi · s = (j · gi) · s

(8.3)
= (j · s) · gsi = ̃ · gsi ,

so we can certainly choose g̃i = gsi . Then as claimed

φs↑(x
′) = g̃k · · · g̃1 = gsk · · · gs1 = (gk · · · g1)s = gsx′ = (φ↑(x

′))s.

Expanding out φs(x′) = s−1φ(x′)s, we can now compute πs↑ in terms of π↑ and s:

πs↑(x) = φs↑(x
′) · x = s · (φ↑(x

′) · (s−1 · x)) = s · π↑(s−1 · x).
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Writing F for the interior of the image of π↑, and F s for the interior of the image

of πs↑, this implies F s = s · F (because s−1 ·Rn = Rn). But Corollary 8.31, together

with Proposition 8.32, says that F s is a fundamental domain for Gs and πs↑ is a

projection onto F s; so F = s−1 · F s is a fundamental domain for G and π↑ is a

projection onto F .

To prove the final claim of the Theorem, that π↑ : Rn → Rn is uniquely de-

fined by the choice of B and ε, we just need to show that a different choice of

the elements g1, …, gk given x ∈ Rn does not change φ↑. In fact φ↑ is determined

completely by what it does to the points x′ ∈ Rn
dist, and φ↑(x

′) lies inside the fun-

damental domain (not on its boundary). By the definition of a fundamental do-

main, any different choice g′1, …, g′k must necessarily combine to give the same

element gx′ (no non-trivial element of G acts trivially), and hence φ↑ is uniquely

determined. □



Chapter 9

Other projection maps

THE COMBINATORIALLY DEFINED PROJECTIONS DISCUSSED in the previous Chapter are

useful as far as they go, but are only defined for finite permutation group actions.

For other group actions, one could apply ad hoc methods to define an analogous

combinatorial projection. However in the first Section of this Chapter we give a

method for finding a projection onto a fundamental domain for any group act-

ing discretely by isometries on a connected Riemannian manifold. This uses the

idea of a Dirichlet fundamental domain, and can be implemented using a discrete

version of gradient descent on the Cayley graph of the group which acts.

We then go on to discuss in more detail an alternative approach to projecting

onto a fundamental domain: projecting onto the quotient space. We explicitly

compute a (nearly) isometric embedding of the quotient space for Z4 acting on

R4 ⊗ Rn by cyclically permuting the coordinates in the first factor.

In Section 9.4, we give a quantitative way to measure the extent to which var-

ious pre-processing approaches to group invariant machine learning distort the

input data and use this to compare these methods. In the final Section we offer

some directions in which our approach can be generalised, say to actions by Lie

groups.
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9.1 Dirichlet projections

This method of computing a projection map follows from a classical proof of the

existence of a fundamental domain for a sufficiently nice action of a group G by

isometries on a metric space (X, d) (for example, a discrete action on a Riemannian

manifold). The idea is to fix some point x0 which is only fixed by the kernel of the

action of G, and then define as follows

Definition 9.1. Let F be

{x ∈ X | d(x, x0) ⩽ d(g · x, x0) for all g ∈ G}.

see for example Section II.1.4 of [110]. Such anF is called an Dirichlet fundamen-

tal domain. By its definition, we can rephrase the problem of finding a projection

πDir : X → F as a minimisation problem for the metric on X : given x ∈ X find

g ∈ G which minimises d(g · x, x0). In practice, this can be approximated using a

discrete gradient descent algorithm.

Let us focus on the special case thatG acts on Rn by orthogonal matrices. Then

the inner product 〈·, ·〉 is invariant. It is efficient to compute 〈·, ·〉, which varies

inversely with the Euclidean distance d between points, so we can perform gradient

descent to minimize

〈g · x,−x0〉 =
1

2

(
d(g · x, x0)2 − |g · x|2 − |x0|2

)
. (9.1)

Choose a point x0 ∈ Rn whose stabiliser is in the kernel of the G action. The

map φ maps x ∈ Rn to the element in G which minimises the Euclidean distance

d(g · x, x0). Our main application of the discrete gradient descent algorithm is for

CICY matrices when G = S12 × S15. Since |G| ≈ 6 × 1020 one cannot minimise a

function over G by simply evaluating it at all elements of G.

It is natural to compute the minimiser of (9.1) on a group orbit using gradient

descent. The steps in the descent are restricted to the discrete G-orbit of the input

point x, so we must define what a gradient is in this case. Taking a generating set
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T for G, two points x, x′ ∈ Rn are adjacent with respect to T if there is t ∈ T such

that x′ = t · x, so in particular, adjacent points are in the same G-orbit.

Definition 9.2. Given an action of a finite group G on Rn, a generating set T of G,

a function N : Rn → R and x ∈ Rn, the discrete gradient descent is an approxi-

mation for
min
g∈G
〈g · x,−x0〉

and is defined iteratively as follows. Let x1 = x. Given xi, define

xi+1 = min
t∈T∪{e}

〈t · xi,−x0〉.

The output of the algorithm is xi when xi+1 = xi.

Since G acts discretely, this algorithm always terminates. In general, there are

many choices for a generating setT resulting in different approximations forφ. For

G = Sn a natural choice for a generating set is given by T = {(1 2), (2 3), . . . , (n−

1 n)}. In particular, one has in this case #T = n − 1 � n! = #Sn. By taking the

union of these generating sets for Sn and Sm one obtains a generating set of size

n+m− 2 for Sn × Sm.

Choosing a larger generating set increases the computational cost of the algo-

rithm but potentially also its accuracy. For example, consider the set T ′ = {tt′ |

t, t′ ∈ T ∪{e}}. This is a generating set for Sn and again yields a generating set for

Sn×Sm in a similar way. When applied to the CICY dataset, we find that choosing

T ′ instead of T leads to a significant increase in computation cost, but not so in

accuracy.

Instead, we use discrete gradient descent starting with different seeds. For a

12 × 15 CICY matrix x, The seeds are xkm := C12
kxC15

m, where Ci is a cyclic per-

mutation matrix, 1 ≤ k ≤ 12, and 1 ≤ m ≤ 15. To each xkm, apply the discrete

gradient descent algorithm above and pick the minimum over all seeds. This in-

creases the computation cost by a constant factor 11× 14 + 1 = 155 but has led to

a significant accuracy boost.

We are unable to give a bound for the number of generators applied to an input

until a local minimum is reached. Experiments on the CICY dataset show that

this number is very low compared to the size of the group. On the original CICY
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dataset the average number of iterations is ≈17.4, with standard deviation ≈15.6

and maximum 163. On an augmented dataset, which contains 10 permutations

of each matrix, the average number of iterations is≈22.5, with standard deviation

≈16.9 and maximum 198.

9.2 Quotient space projections

One potential problem with projecting onto a fundamental domain π : Rn → F is

that this map is in general not strictly G-invariant, see Remark 7.4. Every point is

mapped to a point in its G-orbit, however G-orbits which intersect the boundary

∂F may do so in several points and π does not necessarily pick out a unique one

of these.

For many applications this turns out not to be a problem, because generically

the training data lies in the preimage π−1(F), on which π is G-invariant. There

are cases, however, where it might cause a significant issue, if most of the train-

ing data lies in the preimage π−1(∂F). This is that case for our CICY example in

Section 7.4.2 where the input data is typically a sparse integer matrix.

The way to deal with this mathematically is to project to the quotient space

instead. Since G acts by isometries, the quotient space inherits the metric from

Rn, although it has the structure of an orbifold rather than a manifold. In order

to run a machine learning algorithm with inputs in Rn/G, we need to map it to

a vector space Rn/G ↪→ Rk for some k, so that this map preserves the metric on

the quotient. We write π : Rn → Rn/G → Rk for the composition of these maps,

and call the result a projection onto the quotient space. The key point is that π is now

truly G-invariant. Ideally, π should be an isometric embedding, but it is not always

practical to find a map which is injective or isometric, so instead we content our-

selves with finding a map which locally approximates an isometry and does not

identify ‘too many’ G-orbits. We call such maps locally near-isometric projections.

We can now proceed in the same way as we did when π was a projection onto

a fundamental domain, and train any machine learning model β : Rk → Rm on

the data Dπ
train.



OTHER PROJECTION MAPS 255

Finding an explicit projection onto the quotient space, π, for an arbitrary group

G is an extremely difficult problem. In very special cases like Coxeter group ac-

tions where one has a strict fundamental domain, a projection onto a fundamental

domain turns out to be a projection onto the quotient space. In the next Section

we give an explicit computation in a relatively simple case.

9.3 An embedding of the quotient space for Z4 acting

on R4 ⊗ Rn

In Section 7.4.3 we can think of Z4 acting on a square image by rotations as Z4 ×

{(1)} acting on R4 ⊗ Rn, where Z4 is generated by the permutation s = (1 2 3 4),

and n is the number of pixels in each quadrant of the image. In this Section we

construct an almost-isometric embedding R4/Z4 ↪→ R8 and then extend this to a

locally almost-isometric map (R4 ⊗Rn)/(Z4 × {1})→ R8n. We construct the map

in five stages.

Stage 1 Change of basis

The first stage is an orthogonal change of basis of R4 which reveals the decom-

position of R4 into invariant subspaces. The new basis, written in terms of the

standard one, is{
e1 =

1

2
(1, 1, 1, 1), e2 =

1

2
(1, 1,−1,−1), e3 =

1

2
(1,−1,−1, 1), e4 =

1

2
(1,−1, 1,−1)

}
.

Call the change of basis matrix P . Notice that e1 ·s = e1; e2 ·s = −e3 and e3 ·s = e2;

and e4 · s = −e4, so s acts by fixing Re1, rotating the (e2, e3)-plane by π/2, and

reflecting in the hyperplane e⊥4 . This shows that the action is trivial on the one

dimensional subspace Re1, and preserves the unit sphere S2 in the orthogonal

complement. We now use this decomposition to focus on finding an embedding

of S2/Z4. We can write Z4 as a group extension 1 → H → Z4 → Q → 1 where

H,Q ∼= Z2. It follows that S2/Z4 = (S2/H)/Q where H acts on S2 by rotating by π

in the (e2, e3)-plane, and Q acts on S2/H by the antipodal map.
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Stage 2 Embedding S2/H ↪→ R3

Let S2 be the unit sphere in the copy of R3 spanned by {e2, e3, e4}. Let (x, y, z)

be a point written in these coordinates and, set η1(0, 0,±1) = (0, 0, ξ(±1)) and

otherwise define the map

η1 : S2 − {(0, 0,±1)} → R3 : (x, y, z) 7→

(
1

2

x2 − y2√
x2 + y2

,
1

2

2xy√
x2 + y2

, ξ(z)

)
,

where

ξ(z) =

∫ z

0

√
1− 1

4
t2

1− t2
dt

is an elliptic integral of the second kind. It is a routine calculation to check that η1
indeed defines an isometric embedding S2/H ↪→ R3.

Stage 3 Embedding (S2/H)/Q ↪→ R3

Notice that the image of η1 is indeed invariant under the antipodal map (x, y, z) 7→

(−x,−y,−z), so the action ofQ is well-defined. There is a reasonably well-known

isometric embedding of R3/Q ↪→ R6 given by ν̃ : R3 → R6 called the Veronese

embedding (see Example 2.4 in [58], for example). We denote by η2 = ν̃|S2/H the

restriction of this embedding to S2/H . First we define an isometric embedding

ν : S2 ↪→ R6 of S2/Q, the unit sphere in R3 quotiented by Q,

ν : S2 → R6 : (x, y, z) 7→
(

1√
2
x2,

1√
2
y2,

1√
2
z2, xy, yz, zx

)
.

This extends toR3 by taking the cone of the map as follows: write r =
√
x2 + y2 + z2,

then ν̃(0) = 0 and

ν̃ : R3 − {0} → R6 : (x, y, z) 7→ r

(
ν

(
(x, y, z)

r

)
+

1

3
√
2
(1, 1, 1, 0, 0, 0)

)
.

This works because the image of ν lies in a sphere in a codimension 1 linear hy-

perplane of R6, so we have one spare dimension in which we can send the cone of

the map ν. Stages 2 and 3 are illustrated in Figure 9.1.

Stage 4 Extending the embedding to R4/Z4

We have constructed η2◦η1 which isometrically embeds S2/Z4 inR6. Let (a, b, c, d) ∈

R4 be expressed in standard coordinates, and let P (a, b, c, d) = (w, x, y, z). As
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quotient
by H

quotient
by Q e4

e2
e3

Figure 9.1: Constructing an isometric embedding of S2/Z4 ⊂ R6, which has been pro-
jected into three dimensions in the final picture for the purposes of illustration.

above define r =
√
x2 + y2 + z2. Then let η(0) = 0 and

η : R4 − {0} → R8 : (a, b, c, d) =

(
w,

√
3

2
r

)
⊕ η2

(
rη1

(
(x, y, z)

r

))
. (9.2)

This is an embedding of R4/Z4, but it is not isometric, it does however very closely

approximate an isometric embedding. We quantify this in Example 9.6.

Stage 5 The general case

We now have an almost-isometric embedding η : R4 → R8 of the quotient space

R4/Z4. We want to upgrade this to a map π : R4 ⊗Rn → Rk for some k which can

reasonably be called a projection onto the quotient space (R4 ⊗ Rn)/(Z4 × {(1)}).

The following Proposition is straightforward to prove.

PROPOSITION 9.3: LetG be a finite abelian group andX a Riemannian manifold on which

G acts by isometries. Let H =×n

i=1
G act on Y =

∏n
i=1X component-wise and define

G0 := {(g, . . . , g) | g ∈ G} ⩽ H to be the diagonal subgroup which is isomorphic to G.

Then the quotient spaces Y /G0 and Y /H inherit orbifold structures from Y , and there is

a canonical orbifold covering map Y /G0 → Y /H of degree #Gn−1 induced by the action

of Q = H/G0 on Y /G0.

Proof. The groupH is finite and acts by isometries on Y . Point stabilisers are there-

fore finite groups, hence Y /G0 and Y /H are orbifolds. The diagonal subgroup of

a product is normal if and only if it is abelian, so in our case the quotientQ is well-

defined and Q acts by isometries on Y /G0 with (Y /G0)/Q = Y /H . The quotient

map is the required orbifold covering map. □
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Once can also check that Y /H =×k

i=1
X/G. In our present case, let X = R4

and G = Z4. Then we can identify Y =
⊕n

i=1 R4 with R4 ⊗ Rn, and the action of

G0 on Y is the same as the action of Z4 × {(1)} on R4 ⊗ Rn. If we define

π :=
n⊕
i=1

η :
n⊕
i=1

R4 →
n⊕
i=1

R8

then this is an almost-isometric embedding of Y /H , which has the quotient space

we are actually interested in, (R4 ⊗Rn)/(Z4 × {(1)}) as a 4n−1-fold orbifold cover.

In other words π is a map of this quotient space into R8n which is locally almost

an isometry, and which identifies orbits in sets of size 4n−1.

9.4 Distortion of metrics

The chief difference between our approaches and that of [115] using polynomial

invariants is that we choose our projection onto a fundamental domain or quotient

space to be either a local isometry, or where this is impractical for quotient spaces,

as close to a local isometry as possible. In this Section we introduce a measure of

the extent to which a map fails to be a local isometry called the distortion of the

map. We compute it for a number of the examples we have been considering.

Definition 9.4. Let a finite groupG act by linear isometries on Rn, and letX ⊂ Rn

be a compact, measurable, G-invariant subset of Rn. Suppose π : Rn → Rk is a

smooth projection onto the quotient space. Let g0 be the Riemannian metric on

the non-singular locus of Rn/G inherited from the flat metric on Rn, and let gπ be

the metric induced by the flat metric on Rk. Then we define the distortion of the

map π on X to be
DistX(π) :=

∫
(X/G)0

‖gπ − g0‖dg0,

where (X/G)0 is the non-singular locus of the quotient space, and ‖gπ− g0‖ is the

2–norm of the difference of the metrics expressed as matrices with respect to the

standard coordinates on Rn.

Compare this with the function Loss in [86]. There the authors find it conve-

nient to integrate over ‖gπ − g0‖2 when performing gradient descent, but as an
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absolute measure of the difference between metrics it makes more sense not to

square the integrand.

Example 9.5. If G acts on X with fundamental domain F such that each orbit

intersects ∂F at most once, then we have already remarked that π : X → F is also

a projection onto the quotient space. It follows that π is exactly a local isometry,

and gπ = g0. Hence (X/G)0 = F ∩X and

DistX(π) :=
∫
F∩X

0 dx1 · · ·dxn = 0,

where the xi’s represent some coordinates on X . So there is no distortion.

Example 9.6. Let G = Z4 ⩽ S4 act by cyclically permuting the coordinates of

R4. In the previous Section we constructed an embedding η : R4 → R8, (9.2), of

the quotient space R4/Z4 which we claimed closely approximated an isometric

embedding. On the other hand, following the approach outlined in Section 6.4,

we can compute a generating set of polynomial invariants which gives another

embedding p : R4 → R7 of the quotient space. Explicitly

p(x1, x2, x3, x4) =
(∑

xi,
∑
x2i ,

∑
xixi+1,

∑
x3i ,

∑
xix

2
i+1,

∑
x4i ,

∑
xix

3
i+1

)
,

where each sum runs over i = 1, . . . , 4 and indices are read modulo 4. This group

action arises in the application of image recognition, where each coordinate rep-

resents the brightness of a pixel taking a value in the interval [0, 1], so we choose

as our compact Z4-invariant set, the unit cube X = [0, 1]4. Then we can compute

the distortions of each of these embeddings numerically:

DistX(η) ' 0.29, and DistX(p) ' 8.38.

So p has almost 30 times more distortion than η.

9.5 Generalisations

Here we focuss mainly on a very special type of group action, namely permutation

actions of finite groups on real vector spaces, and how to design machine learn-

ing architectures for problems which are invariant or equivariant with respect to
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these actions. We also focus, in our example applications, on neural network ar-

chitectures. Since projections onto a fundamental domain or the quotient space

can be viewed as a pre-processing steps applied to the input data before machine

learning, they can be applied to any type of supervised machine learning model.

Before discussing more general types of group actions for which our approach

works, we want to mention two additions one could make to our approaches

even in the case of finite groups acting by permutations. Notice that the defi-

nition of the averaging combinatorial projections in Section 8.1.2 simply involves

pre-composing a normal combinatorial projection map by a G-equivariant linear

map µ. Instead of fixing a particular choice of µ, one could replace this with a G-

equivariant neural network with no hidden layers, of the type described in [81].

The second addition applies to quotient space projections, which we noted of-

ten artificially increase the input dimension space considerably. One way to mit-

igate this is described in [86], where the authors give an algorithm based on gra-

dient descent with respect to a loss function similar to the distortion which we de-

fine in Section 9.4, to find near-isometric embeddings of manifolds. Their method

could also take as input an embedding coming from a generating set of invariant

polynomials and make it a near-isometric embedding.

For actions which are not properly discontinuous, for example if G is a real

Lie group, then a fundamental domain does not exist. Nevertheless, the quotient

spaceX/Gdoes always exist, and in general has smaller dimension thanX , mean-

ing finding quotient space projections can be easier than in the case of properly

discontinuous group actions. Once could also define analogues of a fundamental

domain in this setting, and project onto this.
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