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Abstract

The accessibility of groups is concerned with how groups can be decomposed as free products with
amalgamation and HNN extensions. This report aims to be a short introduction to this subject, with
the main prerequisites being just a first course in groups and in topology. The main tool is Bass-Serre
theory which relates to the way groups act on trees. We motivate and outline this in the first chapter,

which for the sake of brevity is necessarily short on detailed proofs. The second chapter discusses
generalities of the structure of groups acting on trees and accessibility. We use the second half of the
report to discuss some specific results and tools in the study of accessibility in detail. Chapter III is
devoted entirely to proving Dunwoody’s Theorem on the accessibility of finitely presented groups.

Chapter IV discusses the specific case of Coxeter groups which have particularly nice properties with
regard to accessibility. In these last two chapters we have endeavoured to prove, or at least justify all of

the results. The author would like to thank Dr. Larsen Louder for his help and guidance throughout
supervising this project, as well as Joe MacColl for his help understanding M.J. Dunwoody’s proof of

J.R. Stallings’ Theorem given in Chapter III.
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I Introduction
The field of geometric group theory is concerned with studying finitely generated groups by looking at
their actions on topological and geometric spaces. The focus here is studying the way in which they
act on simplicial trees, from which we can study how a group can be decomposed as a free product
of subgroups, as well as more complicated generalisations of such decompositions. We shall begin the
introduction by motivating this approach to geometric group theory with some well-known results from
topology. We shall give a brief introduction of Bass-Serre theory which is the main tool in what follows.
The approach is to use the action of a group on a tree in order to decompose it in terms of the stabilisers
of the vertices and edges of the tree.

I.1 Motivation

We shall assume the reader is familiar with expressing groups via presentations with generators and
relations, say G = 〈A | R〉. Recall that the free product of two groups is constructed by taking all
generators and relations which appear in each group, so if H = 〈A′ | R′〉 then the free product of G and
H is G ∗H = 〈A ∪A′ | R ∪R′〉. We define two more group constructions of a similar flavour.

Definition I.1. Let G1 = 〈A1 | R1〉, G2 = 〈A2 | R2〉, and H be groups with homomorphisms
f1 : H 7→ G1 and f2 : H 7→ G2, then the amalgamated product of G1 and G2 over H (with respect
to f1 and f2) denoted by G1 ∗H G2 is the group with presentation

〈A1 ∪A2 | R1 ∪R2, f1(h) = f2(h) ∀h ∈ H〉.

We shall usually be in the situation that f1 and f2 are injective so we can view H as a common
subgroup of G1 and G2, and so G1 ∗HG2 corresponds to the free product of G1 and G2 to which we have
added relations to identify the subgroups isomorphic to H. Indeed taking H = {1} clearly reduces to the
case of a free product. The second construction is due to G. Higman, B. Neumann, and H. Neumann.

Definition I.2. Let G = 〈A | R〉 be a group with subgroup H, and take f : H 7→ G an injective
homomorphism (in particular f(H) is a subgroup of G isomorphic to H). The HNN extension of G
by H (with respect to f) denoted1 by G∗H,t is the group with presentation

〈A, t | R, tht−1 = f(h) ∀h ∈ H〉

where t is a formal generator we introduce called the stable letter.

In this case we introduce a new generator and relations to force H and f(H) to be conjugate in
G∗H,t. Note that the most trivial amalgamated product {1}∗{1} {1} just gives the trivial group, however
{1}∗{1},t = 〈t |〉 ∼= Z is not trivial. In either of these constructions we say that the resulting group splits
over the subgroup H with factors G1 and G2, or just G respectively.

These constructions arise naturally when studying the fundamental group of topological spaces. Let
X be a topological space, recall that its fundamental group is the group of homotopy classes of based
loops with group operation the concatenation of loops. We might as well assume X is path connected
so that we do not need to worry about base points, then we denote this group π1(X). The following two
theorems are well-known.

Theorem I.3 (van Kampen). Let Y , X1, and X2 be non-empty path connected topological spaces, and
let f1 : Y 7→ X1 and f2 : Y 7→ X2 be homeomorphisms such that fi(Y ) ⊂ Xi is open. Let X ′ be the space
constructed from X1, X2 and Y × [0, 1] by glueing the ends of Y × [0, 1] to X1 and X2 via the maps f1

and f2 respectively. Then
π1(X ′) = π1(X1) ∗π1(Y ) π1(X2)

where the group homomorphisms are the obvious ones induced by the maps fi.
1There are number of conflicting notations for an HNN extension. As with amalgamated products, we suppress the

homomorphism f in the notation.
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Sketch proof. For simplicity assume the induced homomorphisms are injective (justifying the theorem
without this condition takes a bit more work). Take loops γi in Xi for i = 1, 2, each of which represents
a non-trivial element in π1(Xi). By injectivity we expect these loops to represent non-trivial elements in
π1(X ′). We need to account for the possibility that γ1 is homotopy equivalent to γ2 in X ′, in which case
it is clear that there is a loop γ ⊂ Y × [0, 1] homotopy equivalent to both γ1 and γ2. Hence in π1(X ′)
we need to ensure that the classes of γ1, γ1, and γ coincide, but this is precisely what the amalgamated
product does for us. �

Theorem I.4. Let X be a (path connected) topological space, and Y ⊂ X an open path connected
subspace. Let f : Y 7→ X be a homeomorphism and define a new space X ′ by glueing a copy of Y × [0, 1]
to X such that Y × {0} is identified with Y and Y × {1} is attached according to the map f . Then

π1(X ′) = π1(X)∗π1(Y ),t

where the homomorphism is induced by f in the obvious way.

The justification for this follows similar reasoning to van Kampen’s theorem. The stable letter t can
be thought of as a loop which goes around the “handle” we have added thus introducing genus. We can
now use these results to calculate the fundamental groups of some spaces very easily.

Example I.5. It is clear from the definition of the fundamental group that π1(X) depends only on the
homotopy equivalence class of X, and that π1(point) = {1}. [0, 1] ' {point}, hence π1([0, 1]) = {1}.
We can get S1 by identifying the (open neighbourhoods of the) endpoints of [0, 1] and then the second
theorem says π1(S1) = {1}∗{1},t ∼= Z. The cylinder [0, 1] × S1 ' S1 is homotopy equivalent to a circle,
so it has fundamental group Z as well.

We can construct S2 by gluing two discs D along a neighbourhood of their boundary (a cylinder) to
see that π1(S2) = {1} ∗Z {1} = {1}. Note we get the trivial group because the homomorphisms induced
by inclusion are not injective. We can also calculate the fundamental group of the torus T 2 by identifying
the ends of a cylinder to get π1(T 2) = Z∗Z,t ∼= Z2.

As a final example we shall compute the fundamental group of a more complicated space: consider
the wedge of two circles crossed with an interval. This gives two cylinders which meet tangentially in a
line. Identify the two ends of this double cylinder after making k half-twists to get a space Xk, what is
π1(Xk)? If k is even then Xk can be thought of a torus wrapping around another torus, intersecting in a
single line which is a torus knot (q.v. Figure I.1a), so the fundamental group is an amalgamated product

π1(Xk) = 〈a, b | ab = ba〉 ∗〈x〉 〈c, d | cd = dc〉

with homomorphisms f1 : x 7→ b and f2 : x 7→ ckd. After some manipulation we see π1(Xk) = Z× F2.
If k is odd then we end up with a space homotopic to a Möbius band whose single edge is replaced by

a torus (q.v. Figure I.1b). In this case π1(Xk) can be obtained as an HNN extension of the fundamental
group of the wedge of two circles. π1(S1 ∨ S1) = π1(S1) ∗π1(point) π1(S1) = F2 the free group on two
generators {x, y}, so

π1(Xk) = F2∗F2,t

with homomorphism f : x 7→ y and y 7→ x. Whence π1(Xk) = 〈x, y, t | txt−1 = y〉.

(a) (b)

Figure I.1
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The starting point for the study of groups by looking at spaces in this way is the observation that
given any group G there is a space X such that G ∼= π1(X). In the case that G is finitely presented, X
can be taken to be a 2–dimensional CW-complex as follows. Take a bouquet (wedge product) of oriented
circles, one for each of the k generators. This has fundamental group the free group on k generators.
Each relation in G is a word in the generators and their inverses, attach a disc to the bouquet of circles
according to each of these relations thus trivialising the corresponding loop in the fundamental group.
This gives the required space X which is called the presentation complex for G, whose universal cover is
the Cayley 2-complex of G.

We want to study the way a group G decomposes as an arbitrary number of amalgamated products
and HNN extensions simultaneously. The way to think of this topologically is as a graph of spaces,
where the “vertices” are the spaces X1, X2, and X in the two theorems, and the “edges” are the handles
Y × [0, 1]. An example of such a graph of spaces is shown in Figure I.2a. We have also exhibited the
underlying graph with edges and vertices labelled by the fundamental group of the corresponding space.
Note that for each edge group we have homomorphisms into the groups labelling the endpoints of the
edge.

X1

X2

X3 X4 X5
X6

Y1

Y2

Y3

Y4

Y5 Y6

Y7

Y8

(a) A graph of spaces in which the spaces are labelled Xi, and the edges Yj × [0, 1] are labelled Yi.

π1(Y1)

π1(Y2)

π1(Y3)

π1(Y4)

π1(Y5) π1(Y6)

π1(Y7)

π1(Y8)

π1(X1)

π1(X2)

π1(X3)

π1(X4) π1(X5)
π1(X6)

(b) The underlying graph labelled with the fundamental groups. A maximal subtree is coloured blue.

Figure I.2

We can choose a maximal tree in the underlying graph (say the one shown in blue), and collapse the
corresponding edges in the graph of spaces by appropriate homotopies so as to view⋃

i

Xi ∪
((⋃

{Y3, Y4, Y5, Y6, Y7}
)
× [0, 1]

)
as a single space X with three “handles”. On the level of fundamental groups this collapsing of edges
corresponds to series of amalgamated products which we write out explicitly for the sake of completeness2.

π1(X) = (π1(X1) ∗π1(Y3) π1(X3) ∗π1(Y4) π1(X2)) ∗π1(Y5) π1(X4) ∗π1(Y6) π1(X5) ∗π1(Y7) π1(X6)

This gives us a new graph of spaces which is a bouquet of circles as shown in Figure I.3. Collapsing
the edges of this by appropriate homotopies corresponds to a series of HNN extensions on the level of

2Considering the definition of amalgamated products we see that the order in which the edges are collapsed does not
matter, the same holds for HNN extensions.
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fundamental groups, so we end up with a single space X ′ whose fundamental group is

π1(X ′) = ((π1(X)∗π1(Y1),t1)∗π1(Y2),t2)∗π1(Y8),t8

Hence we have a correspondence between a complicated decomposition of a space as a graph of spaces,
and an equally complicated decomposition of its fundamental group as a graph of groups, or equivalently
as a series of amalgamated products and HNN extensions.

XY1

Y2

Y8

Figure I.3: The graph of spaces after collapsing a maximal subtree.

Bass-Serre theory formalises all of this, as well as gets round the problem of possibly having compli-
cated decompositions of “simple” spaces which corresponds to a trivial decomposition of the fundamental
group (as was the case in Example I.5 when decomposing S2 gave {1} = {1} ∗Z {1}). What Bass and
Serre were able to show is that we can in fact forget about graphs of spaces (although they are a useful
intuitive tool), and just consider the action of a group G on a tree T . Then G\T , labelled by the sta-
bilisers of the vertices and edges, is a graph of groups corresponding to a decomposition of G as a series
of amalgamated products and HNN extensions analogous to the above.

I.2 Bass-Serre Theory

Details of the material in this section can be found in [20].

2A Graphs and Group Actions

We begin with the formulation of a combinatorial graph due to Serre.

Definition I.6. A graph Γ consists of two sets V = Vert(Γ) and E = Edge(Γ) (whose elements are
called the vertices and edges of Γ respectively), together with maps

E 7→ V × V : e 7→ (o(e), t(e)) E 7→ E : e 7→ e

which satisfy e 6= e, e = e, and o(e) = t(e). For an edge e, the vertices o(e) and t(e) are called the origin
and terminus of e respectively, and collectively as the extremities or endpoints of e.

Such a graph can be realised topologically in the usual way, with the vertices given as points, and
edge pairs {e, e} as arcs. An orientation of Γ amounts to a choice of E+ ⊂ E such that E = E+tE+. We
shall assume the reader is familiar with the basic notions and terminology of graph theory which carry
over to this formulation. In particular a tree is a connected graph which contains no cycles (equivalently
a graph whose topological realisation is connected and simply connected).

Definition I.7. A group G acts on a graph Γ (on the left) if it acts on the sets V and E such that the
structure of Γ is preserved. Then we call Γ a G-graph. We say that G acts freely, if the action is free
on the set of vertices (i.e. vertex stabilisers are trivial).

An equivalent way of thinking of this is that a G-graph is a graph Γ together with a representation
G 7→ Aut(Γ). Clearly we can make any graph Γ into a G-graph by making G act trivially. A more
interesting class of examples comes from Cayley graphs.
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Definition I.8. Let G be a group and S a subset of G, then the Cayley graph of G relative to S,
denoted Γ(G,S), is the oriented graph which has vertex set V = G, and E+ = G × S with o(g, s) = g
and t(g, s) = gs for each edge (g, s) ∈ G× S.

Often it is useful to take S to be a finite set of generators of G (if such a set exists) in which case
Γ(G,S) is connected and cycles correspond to relations in the group. In any case G acts on Γ(G,S)
freely. As a first application of studying the way groups act on graphs, and to yet further motivate the
approach discussed below, we study the structure of subgroups of free groups by examining the actions
of these groups on trees.

Proposition I.9. [20, Proposition I.15] Let G be a group and S a subset of G, then Γ(G,S) is a tree if
and only if G is free with free basis S.

Proof. Γ(G,S) is a tree if and only if it is connected and contains no cycles. Connectedness is equivalent
to S generating G, and the fact that there are no cycles implies that G has no relations, hence it is free.
We just need to establish the equivalence of cycles in the Cayley graph, and relations in the group. Let
C be a cycle with length n > 1 and no back-tracking, then we may assume 1 is a vertex in C (if not,
pick a vertex g in C, and act by g−1 to give a cycle g−1C which contains 1). Going around this cycle
starting from a vertex adjacent to 1 gives a sequence of elements s1, s1s2, s1s2s3, . . . , s1s2 · · · sn. Then
necessarily s1s2 · · · sn = 1 in G, so G has some non-trivial relation. Conversely it is clear that if we have
a relation, then this defines a cycle in Γ(G,S). �

Theorem I.10. [20, Theorem I.4] A group G is free if and only if there is a tree on which it acts freely.

Proof. By the previous proposition, if G is free, then it acts freely on Γ(G,S) (for S some free basis),
which is a tree. Conversely let T be a tree on which G acts freely. Passing to the topological realisation
of T , since it is simply connected T is the universal cover of G\T (the topological quotient is always
defined, even if the quotient graph is not — see below). Hence G can be identified with π1(G\T ), but
since G\T is homotopy equivalent to a bouquet of circles, G must be free. �

This theorem now follows immediately.

Theorem I.11 (Schreier’s Theorem). [20, Theorem I.5] Every subgroup of a free group is free.

Proof. Let G be free, then it acts freely on a tree. If H is a subgroup of G, then it necessarily also acts
freely on the same tree, hence is itself free. �

Given a G-graph Γ, we say that G acts without inversion if there is no element g ∈ G together
with an edge e such that g.e = e. It is easy to see that G acts without inversion if and only if there is
some orientation E+ of Γ which is preserved by the action of G. When we have such an action, then the
quotient G\Γ satisfies the definition of a graph given above. If G acts on Γ with inversion, then we can
easily obtain a graph from Γ on which G acts without inversion by equivariantly subdividing all edges
which are inverted, introducing new orbits of vertices consisting of the midpoints of all problematic
edges. Henceforth, unless stated otherwise, we shall assume that if we have a G-graph then G acts
without inversion.

2B Graphs of Groups

We want to formalise the notion above of a series of amalgamated products and HNN extensions via the
fundamental group of a graph of groups.

Definition I.12. A graph of groups G = (G,Γ) consists of a connected graph Γ and groups Gv for
each v ∈ V and Ge for each e ∈ E such that Ge = Ge, along with injective homomorphisms Ge ↪→ Gt(e).

This is the same as the example shown in Figure I.2b except with the added injectivity condition. We
want to define an analogue of π1(X ′) in that example. First we shall define the group F (G,Γ) associated
to a graph of groups G = (G,Γ) as the group generated by the vertex groups of G together with the
elements e ∈ E subject to relations

e = e−1

ef(g)e−1 = f(g) ∀g ∈ Ge
where f : Ge ↪→ Gt(e) and f : Ge ↪→ Gt(e).
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Definition I.13. Let G = (G,Γ) be a graph of groups, and T ′ a maximal subtree of Γ. The funda-
mental group of G is the group π1(G,Γ) obtained as the quotient of F (G,Γ) by the subgroup normally
generated by the generators e ∈ Edge(T ′).

This is directly analogous to what we did in the first section calculating the fundamental group of a
graph of spaces. It can be shown that the fundamental group does not depend on the choice of maximal
subtree T ′. Note that if we quotient out by e then the relation in F (G,Γ) reduces to f(g) = f(g) which
was the relation in an amalgamated product; otherwise ef(g)e−1 = f(g) is the relation in an HNN
extension with e the stable letter. The graph of groups corresponding to a single amalgamated product
consist of a segment with two vertices, and an HNN extension corresponds to a single vertex with a loop.
Henceforth, by an abuse of notation, we shall not distinguish an edge e from its reverse e. The following
structure theorem for the fundamental group of a graph of groups is key to the structure theorem of
groups acting on trees in the next section.

Theorem I.14. [20, Theorem I.2] Let G = (G,Γ) be a graph of groups, then the canonical homomor-
phisms Gv 7→ π1(G,Γ) and Ge 7→ π1(G,Γ) defined by sending generators to their images in π1(G,Γ)
(where Gv is a vertex group and Ge is an edge group), are injective.

Remark I.15. If all the vertex and edge groups are trivial then π1(G,Γ) is isomorphic to the fundamental
group of the underlying graph Γ, thus in general by mapping each vertex and edge group to {1} we get
a surjective homomorphism π1(G,Γ) 7→ Fβ1

onto the free group on β1 generators, where β1 is the first
Betti number of Γ. On the other hand if G arises from a graph of spaces which is a decomposition of a
space X ′ then π1(G,Γ) = π1(X ′).

We are most interested in the case when G arises from the action of a group on a tree as follows. Let
T be a G-tree and let G\T be the quotient graph. The vertices and edges of G\T are orbits of vertices
and edges of T under the G-action. Choose a representative from each orbit and label the corresponding
vertex or edge in G\T by the stabiliser of this representative. Suppose v and v′ are two vertices of T
which are in the same orbit, and gv = v′ for some g ∈ G, then Gv′ = gGvg

−1 where Gv = Stab(v) and
Gv′ = Stab(v′), so these vertex and edge labels are well-defined only up to conjugacy (similarly for edge
groups). In order to define the homomorphisms of the edge groups into the vertex groups we need the
following result.

Proposition I.16. [20, Proposition I.14] Let Γ be a connected G-graph. Every subtree T ′ of G\T lifts
to a subtree of T .

Proof. Consider the set of all subtrees of Γ which map injectively into G\Γ ordered by containment,
and let T ′0 be a maximal such subtree. If T ′0 does not map onto T ′ then there is some edge e of T ′ not
represented by an edge of T ′0. We can lift this to an edge ẽ in Γ which has an endpoint in T ′0, and we
claim T ′1 = T ′0 ∪ ẽ is a tree which is therefore mapped injectively into T ′ contradicting the maximality
of T ′0. Indeed if T ′1 were not a tree, then both endpoints of ẽ are in T ′0 and thus e must form part of a
cycle in T ′ which is not possible. �

Returning to G acting on a tree T , we define the homomorphisms in the resultant graph of groups
as follows. Let T ′ be a maximal tree in G\T , and let T̃ ′ be a lift of T ′ in T which is a tree of
representatives for G\T . T ′ contains all vertices of G\T , so take the vertex groups of G\T to be the
stabilisers of the corresponding vertex in T̃ ′. Let e be an edge of T ′ whose lift is ẽ, since G acts without
inversion if g ∈ G fixes ẽ then it fixes o(ẽ) and t(ẽ) hence we can take the homomorphisms to be simple
inclusion Gẽ ↪→ Go(ẽ) and Gẽ ↪→ Gt(ẽ).

We are now left with the edges of G\T not contained in T ′. Let e now be such an edge, both of its
endpoints are in T ′ so there are lifts ẽ and ẽ′ of e such that gẽ = ẽ′ for some g ∈ G, o(ẽ) ∈ T̃ ′ represents
o(e) and t(ẽ′) ∈ T̃ ′ represents t(e). Then as before we have inclusions Gẽ ↪→ Go(ẽ) and Gẽ′ ↪→ Gt(ẽ′)
and Gẽ′ = gGẽg

−1. Therefore take Gẽ as the edge group of e, with inclusion into one vertex group, and
the conjugate by g of inclusion into the other vertex group. These homomorphisms are all injective as
required thus we have defined a valid graph of groups.

Remark I.17. It is clear that the requirement that T is a tree is redundant in this definition, we just need
it to be connected. The reason we restrict ourselves to trees is made plain be the structure theorem in
the next section.
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2C Examples and the Structure Theorem

Before we proceed to the structure theorem for groups acting on trees we give some examples of graphs
of groups arising from group actions on trees as described above.

Example I.18. Consider the real line as a graph, with vertex set the set of integers, on which the
infinite dihedral group D∞ acts by translations and reflections. The edge stabilisers are trivial, and
vertex stabilisers are copies of Z2, so the graph of groups looks like

Z2 Z2{1}

Example I.19. The free group F2 on two generators x and y acts freely on the Cayley graph Γ(F2, {x, y})
as described in Definition I.8. The Cayley graph and graph of groups are shown in Figures I.4a and I.4c.

Example I.20. It is well-known how SL2(Z) acts on the hyperbolic plane. This gives a tiling of the
hyperbolic plane by the fundamental domain of the action as shown by the grey lines in Figure I.4b.
This induces an action on an infinite tree (shown in blue), with fundamental domain an interval. The
stabilisers can be computed and the corresponding graph of groups is shown in Figure I.4d.

1

x

x−1

y

y−1

(a) The Cayley graph of F2.
(b) The action of SL2(Z) on the Poincaré disc with
induced action on an embedded tree.

{1}
{1}{1}

(c) The graph of groups corresponding to the action
of F2 on its Cayley graph.

Z4 Z6Z2

(d) The graph of groups corresponding to the ac-
tion of SL2(Z) on H2.

Figure I.4: Examples of graphs of groups arising from group actions on trees.

The main tenent of Bass-Serre theory is the following structure theorem for groups acting on trees.
The case when the associated graph of groups has a single edge was proved by Serre, the general case by
Bass.

Theorem I.21. [20, Theorem I.13] Let G be a group acting on a graph Γ with associated graph of
groups G = (G,Γ′) and let φ : π1(G,Γ′) 7→ G be the homomorphism induced by the inclusion of the
vertex stabilisers of G into G. Then φ is an isomorphism if and only if Γ is a tree.

One can easily check the veracity of the theorem in Examples I.18 and I.19 above, the theorem implies
that SL2(Z) = Z4 ∗Z2

Z6 from Example I.20. An easy example of the contrapositive of the statement
is to consider the trivial group acting trivially on any graph Γ containing a cycle. Then the graph of
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groups has Γ as its underlying graph, all stabilisers are trivial, and the fundamental group of this graph
of groups is some free group with positive rank, in particular it is not the trivial group.

The proof of the full theorem is too long to include here, but we can sketch the proof if we limit to the

case that G\Γ =
Gv GuGe

is just a segment, so we are representing G as a single amalgamated
product of the vertex groups over the edge group. The theorem follows from two lemmata.

Lemma I.22. [20, Lemma I.2] Γ is connected if and only if G is generated by Gv ∪Gu (so in particular
φ is surjective).

Proof. Let T̃ =
v ue

be a lift of G\Γ in Γ, and let Γ′ be the connected component of Γ containing
T̃ . Denote by GΓ′ the elements g ∈ G such that gΓ′ = Γ′, and let G′ be the subgroup of G generated by
Gv ∪Gu. For h ∈ Gv ∪Gu, hT̃ and T̃ share a common vertex so hT̃ ⊂ Γ′, hence hΓ′ = Γ′ and h ∈ GΓ′ .
On the other hand G′T̃ and (G−G′)T̃ are disjoint subgraphs of Γ whose union is Γ, so G′T̃ contains Γ′.
Hence GΓ′ = G′. The graph Γ is connected if and only if Γ = Γ′, i.e. if G = GΓ′ = G′. �

Lemma I.23. [20, Lemma I.3] Γ contains no cycles if and only if φ is injective.

Sketch Proof. Suppose there is a cycle (e0, e1, . . . , ek) in Γ, which necessarily projects onto the interval
G\Γ sending alternate vertices to the opposite endpoints of the segment. If e0 is our chosen lift of the
edge e ∈ G\Γ then ei = hie0 for some hi ∈ G. It is easy to see that hi = hi−1gi for gi ∈ Go(ei), and
because ei and ei−1 intersect only in a vertex, gi 6∈ Gei .

Since o(e0) = t(ek) we have h0o(e0) = hno(e0) = h0g1 · · · gko(e0) so g1 · · · gk ∈ Go(e0). Hence we have
the sequence of elements gi ∈ Go(ei) − Gei such that g0g1 · · · gk = 1 in G, however Theorem I.14 says
that g0g1 · · · gk 6= 1 in Gu ∗Ge

Gv, so φ is not injective. �

If G is a graph of groups whose fundamental group is isomorphic to G, we say that G is a graph
of groups decomposition of G. To finish this chapter we claim that in fact every graph of groups
decomposition G of a group G can be realised via the fundamental group acting on an appropriate tree.
We shall do this by constructing a tree Γ̃ which is in some sense the universal cover of G with an action
of π1(G) = G on Γ̃ such that G = (G,Γ) = (G,G\Γ̃).

Γ̃ is called the Bass-Serre tree of G and is defined as follows. The vertices and edges of Γ̃ are the
disjoint unions over the vertices and edges of Γ of the cosets of the vertex and edge groups.

Vert(Γ̃) :=
∐

v∈Vert(Γ)

G/Gv Edge(Γ̃) :=
∐

e∈Edge(Γ)

G/Ge

G acts on these sets on the left and it is clear that the stabiliser of the vertex Gv (a lift of v ∈ Vert(Γ)),
is the subgroup Gv. To make Γ̃ a graph we still need to specify the map Edge(Γ̃) 7→ Vert(Γ̃)× Vert(Γ̃)
(recall we are no longer distinguishing edges e and e). For any g ∈ G

o(gGe) = gGo(e) t(gGe) = geGt(e)

Recall G = π1(G) takes the edges e ∈ Edge(Γ) as generators. It is an easy exercise to check that these
expressions give rise to a well-defined graph, and that G acts without inversion. It is harder to show
that Γ̃ is a tree [20, Theorem I.12], and has the properties claimed above [20, Theorem I.13]. Moreover
it is true that if G acts on a tree T giving a graph of groups G and Γ̃ is the Bass-Serre tree for G, then
T and Γ̃ are isomorphic as G-trees. This means not only that every graph of groups decomposition of G
can be realised by G acting on a tree, but also that there is a unique such realisation up to isomorphism
(of G-trees).

Because we have an isomorphism between a group acting on a tree and the fundamental group of
the graph of groups arising from that action, we shall spend the rest of the report studying the way
groups split by studying their graphs of groups. We shall from now on use the following conventions
to simplify our G of G as representing a G-equivalence class of vertices in the G-tree Γ̃. Suppose v is
the representative of this equivalence class such that the vertex in G is labelled by the stabiliser of v,
then we shall use V to denote simultaneously the equivalence class of vertices in Γ̃, the vertex of G, and
the stabiliser group labelling this vertex. Similarly for an edge e of Γ̃ we shall label the class, edge, and
group in G by E.
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II Accessibility
A graph of groups decomposition of a group G is trivial if one of the vertex groups is G itself. Before
we can introduce the notion of accessibility we need to discuss how to tell whether a group has any
non-trivial splittings at all.

II.1 Conditions for the Existence of Splittings

This first observation is trivial.

Lemma II.1. [16, Section 2] Suppose G does not admit any surjection G 7→ Z (equivalently does not
have any quotient isomorphic to Z), then G does not split as an HNN extension over any subgroup.

Indeed if it did, then the homomorphism which sends the stable letter to 1, and trivialises all other
generators contradicts the hypothesis. If G satisfies this lemma, then it can only split as amalgamated
product, so if G is a graph of groups decomposition of G, then the underlying graph must be a tree.

Example II.2. A Coxeter group W is a group generated by reflections which acts discretely. Coxeter
groups admit a presentation of the form

W = 〈S = {s1, . . . , sk} | s2
i = 1 = (sisj)

mij ∀ 1 ≤ i < j ≤ k〉

for mij ∈ {2, 3, . . . ,∞}, where mij = ∞ means si and sj are unrelated. Since all the generators are
torsion, any homomorphism W 7→ Z must send S to 0, and hence be trivial.

More generally, the following is an easy observation.

Lemma II.3. A group G does not admit any surjection onto Z if and only if it is generated by some
subset A consisting of torsion elements.

1A The Property (FA)

J. Serre introduced the following property for a group G: (FA)1

Whenever G acts on a tree, there is a global fixed point.

It is an easy exercise to show that whenever a finite group acts on a tree it stabilises a vertex or an
edge, so all finite groups have the property (FA). In general one can see that if G has the property (FA),
and G is a graph of groups decomposition from the action of G on a tree T , then G will have a vertex
labelled G, hence we have the following.

Theorem II.4. [20, Theorem I.15] G has the property (FA) if and only if the following are satisfied:

1. G has no non-trivial splitting as an amalgamated product or HNN extension, and

2. G is not the union of an increasing sequence of subgroups (if G is countable, we can replace this
with the condition that G is finitely generated).

We list some properties and consequences which follow immediately.

1. If G is contained in an amalgam G1 ∗H G2 and has the property (FA) then it is contained in a
conjugate of G1 or G2.

2. If G has the property (FA) then every quotient of G has the property (FA).

3. Let H / G, if H and G/H have the property (FA), then so does G.

As an example, J. Serre was able to show that SL3(Z) has the property (FA) and so does not split;
this was generalised to all subgroups of finite index by G. Margulis and J. Tits [14, Proposition 2].

1From the French fixe arbre meaning fixes a tree.
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1B Elliptic and Hyperbolic Group Actions

If there is no global fixed point of a group acting on a tree then we can classify the way group elements
act on the tree as follows.

Lemma II.5. [24, Proposition 3.2], [20, Proposition I.25] Let G act on a tree T , and let g ∈ G. Either
g fixes a point (in which case we say g acts elliptically), or else it fixes no point and there is a unique
doubly infinite path (the axis of g) which is stabilised by g (in which case we say g acts hyperbolically).

Proof. We consider the action of G on the geometric realisation of T . For two points x, y ∈ T , let [x, y]
denote the unique geodesic joining them. Consider the action of an element g and assume it fixes no
point, we shall show it fixes an axis.

For v a vertex of T , let m be the midpoint of [v, gv]. If [v, gv] ∪ [gv, g2v] = [v, g2v] then it is clear
that 〈g〉-translates of [v, gv] form an invariant axis and we are done, so assume this is not the case.
Then let o be the unique valence three vertex in the subgraph [v, gv] ∪ [gv, g2v] (q.v. Figure II.1). If
d(v,m) ≥ d(v, o) then g fixes m contradicting our assumption, hence d(v,m) < d(v, o). We claim that
d(m, g2m) = 2d(m, gm) so that 〈g〉-translates of [m, gm] form axis. In fact since o ∈ [m, gm] and
go ∈ [gm, g2m] we need only show that d(o, go) = 2d(o, gm).

d(o, go) = d(gv, g2v)− 2d(o, gv) = d(v, gv)− 2

(
1

2
d(v, gv)− d(o, gm)

)
= 2d(o, gm). �

v gv g2v

om gm go

Figure II.1

There are four possibilities for a group G acting on a G-tree T which has no G-invariant proper
subtrees [23, Section 2.2], [3, Remark 4]:

(E) Elliptic: T is a point and all elements act elliptically.

(H) Hyperbolic: There are two elements in G which act hyperbolically, whose axes intersect in a compact
set. Then large powers of these elements generate a subgroup isomorphic to F2.

(P) Parabolic: There is an infinite ray (half-infinite path) R in T such that gR ∩ R is an infinite ray
for all g ∈ G. Then G fixes an end of T (q.v. next section), i.e. a point at infinity.

(D) Dihedral : T is a line and G acts via a surjective homomorphism G 7→ D∞.

1C Ends of Groups and Stallings’ Theorem

In this section we shall consider Stallings’ Theorem characterising when finitely generated groups split
as a graph of groups with finite edge groups.

Definition II.6. Let X be a topological space, K1 ⊂ K2 ⊂ K3 ⊂ · · · an ascending sequence of compact
subsets such that

⋃
iKi = X. The number of ends of X, e(X) is the limit as i → ∞ of the number of

connected components of X −Ki

Intuitively e(X) is the number of connected components of X “at infinity”. The spaces R0, R, and
R2 have 0, 2, and 1 end respectively.

Definition II.7. Two metric spaces M1 and M2 are quasi-isometric if there is a function f : M1 7→M2

and non-negative constants A, B, and C such that:

1. For all x, y ∈M1
1

A
d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B

2. For all y ∈M2, there is x ∈M1 such that d2(f(x), y) ≤ C.
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Being quasi-isometric is an equivalence relation which only cares about the coarse structure of the
spaces M1 and M2. If M1 and M2 are quasi-isometric then e(M1) = e(M2). If G is a finitely generated
group, and S and S′ are finite generating sets, then the Cayley graphs Γ(G,S) and Γ(G,S′) are quasi-
isometric, hence we can make the following definition.

Definition II.8. Let G be a finitely generated group with finite generating set S. The number of ends
of G, e(G) is equal to e(Γ(G,S)).

Remark II.9. It is easy to show in fact that if K is a connected simplicial complex on which G acts freely
with finite quotient, then K is quasi-isometric to Γ(G,S), and hence e(K) = e(G) is independent on the
choice of K.

It is clear that G is finite if and only if e(G) = 0. More generally we have the following.

Lemma II.10. [19, Corollary 5.9] Let G be finitely generated, then e(G) is 0, 1, 2, or ∞.

Proof. Assume e(G) is not 0, 1, or ∞, and write n = e(G). Let S be a finite generating set of G, and let
K be a connected compact subgraph of the Cayley graph Γ(G,S) which separates the n ends of Γ(G,S)
i.e. Γ(G,S)\K has n connected components which have non-compact closure. Such a K clearly exists by
the definition of ends. Choose an element g ∈ G such that gK ∩K = ∅, g exists because K is compact.
Removing gK also separates the n ends since Γ(G,S) is homogeneous, and K must be contained in one
of these ends. Similarly gK must be contained in one of the ends after removing K. Removing a compact
connected set which contains K and gK produces 2(n− 1) ends, and the only solution to 2(n− 1) = n
is to take n = 2. �

The following characterisation of groups with two ends will be useful later.

Theorem II.11. [7, Theorem 9.22] Let G be finitely generated, e(G) = 2 if and only if G is virtually
infinite cyclic, i.e. it has a subgroup of finite index isomorphic to Z.

We can now state Stallings’ Theorem which is the motivation for the next chapter. An “elementary”
proof can be found in, for example, [12]. We shall prove Stallings’ theorem for finitely presented groups
in Section III.2.

Theorem II.12 (Stallings’ Theorem). [22, 21] A finitely generated group G splits non-trivially over a
finite subgroup if and only if e(G) > 1.

II.2 Complexity of Group Splittings

When studying how groups split as graphs of groups, it is natural to try and associate the “complexity”
of the group with the complexity of its decompositions, and this is what accessibility is all about. In order
to do this we need to first rule out ways of producing complicated graphs of groups which correspond to
trivial splittings. For example any group splits as an amalgam over itself G = G ∗G G so we make the
following definitions.

2A Preliminary Definitions

Definition II.13. We say a graph of groups decomposition G of a group G is reduced if all vertex
groups properly contain the edge groups incident to them as subgroups except possibly when the edge
is a loop. If G is not reduced, then we can easily obtain a reduced graph of groups decomposition of G
by recursively collapsing vertices across edges which do not satisfy the above condition (see for example
Figure IV.2 on page 21).

A nice property of reduced graphs of groups is the following lemma which says that no two vertices
have the same label up to conjugacy (the same is not true for edges).

Lemma II.14. [16, Lemma 3] Let G be a reduced graph of groups and let V and U be vertices. If
gV g−1 ⊂ U then U = V and g ∈ V .

Proof. If V 6= U , or U = V but g 6∈ V then V stabilises the distinct vertices v and g−1u in the Bass-Serre
tree Γ̃. Hence V stabilises the geodesic path between these two vertices, and in particular an edge e
incident to v. Hence in G we have V = E contradicting reducedness. �
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If we have any graph of groups decomposition of G then we can collapse any connected subgraph (i.e.
replace the subgraph with a vertex labelled by the fundamental group of the subgraph) to get a simpler
graph of groups decomposition of G. It is useful to consider the reverse of this process.

Proposition II.15. [16, Section 2] Let G be a graph of groups decomposition of G, and let H be a
subgroup of G labelling a vertex of G. Let H be a graph of groups decomposition of H. If every edge
group of G incident to H is an H-conjugate of a subgroup of some vertex group of H, then we can replace
the vertex H in G by the graph H, attached by appropriate edges, to get a more complicated graph of
groups decomposition G′ of G. If H satisfies the above conditions we call it compatible.

It is clear that if we start off with some complicated graph of groups G′ and collapse some connected
sub-graph of groups decomposition H to get a graph of groups G, then H is compatible with G. Hence
we can construct any finite graph of groups decomposition of G by starting off with the single vertex
labelled G (the trivial graph of groups) and iteratively split vertex groups as amalgamated products or
HNN extensions, replacing the vertex with either a segment or a loop as appropriate and reducing. This
leads to the notion of a splitting sequence, see Definition II.20.

Requiring reducedness is one way of avoiding producing complicated graph of groups decompositions
which do not correspond to complicated algebraic splittings of the group. Another way is to demand
that Γ is minimal.

Definition II.16. A G-tree T is minimal if it contains no proper G-invariant subtrees.

If we do not demand minimality then given a G-tree we can equivariantly attach as many other
G-trees as we like to produce arbitrarily complicated graph of groups decompositions.

Remark II.17. If G is finitely generated and G is a graph of groups coming from a minimal G-tree, then
the underlying graph of G is finite [1, Proposition 7.9].

2B Types of Accessibility

Accessibility is about bounding the complexity of graph of groups decompositions of a given group G.
Conditions of reducedness and minimality are useful but in general are not sufficient, one must also put
conditions on the splitting groups. Recall we say G splits over a subgroup H if there is a graph of
groups decomposition of G which has H as an edge group (c.f. Definitions I.1 and I.2).

Definition II.18. A collection of groups C is a class of groups if the collection is closed under
isomorphism, i.e. G ∈ C and H ∼= G implies H ∈ C. In particular a class of subgroups of a group G
must be closed under conjugation (recall the labels of a graph of groups coming from a G-tree are only
defined up to conjugation).

Example II.19. Here are three classes of groups which commonly arise in this context. The class of
finite groups, the class of slender groups which are groups all of whose subgroups are finitely generated,
and the class of small groups which are groups which do not contain F2 as a subgroup (the reason for
considering this class is to preclude the possibility of hyperbolic actions on trees, see (H) in Section 1B
above). It is well-known that F2 contains countably generated subgroups so is not slender. Hence we
have the inclusions of classes

{finite} ⊂ {slender} ⊂ {small}.

We can define various notions of accessibility.

Definition II.20. Let G be a group, and C a class of groups. A splitting sequence for G over C

is a sequence of distinct reduced graph of groups decompositions G1,G2,G3, . . . where G1 is the trivial
decomposition (consisting of a single vertex), and for each i > 1, Gi is obtained from Gi−1 by compatibly
splitting a vertex group of Gi−1 as either a single amalgamated product or HNN extension with edge
group in C, followed by reducing.

A group G is accessible2 over C if there is some number N(G), depending only on G, which bounds
the length of any splitting sequence of G over C. G is said to be hierarchical accessible3 over C if there
is a bound (again only depending on G) on the length of any sequence of groups G = V1, V2, V3, . . . , Vn
such that Vi is a vertex group in a non-trivial graph of groups decomposition of Vi−1 over C.

2Historically a group was said to be accessible if it was accessible over finite groups, see for example [19, Section 7].
3Some authors refer to hierarchical accessibility as strong accessibility.
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Example II.21. [3, Remark 4] Here is a very simple counter example to generalised accessibility. The
free group on two generators F2 admits arbitrarily long reduced graph of groups decompositions of the
form:

〈x〉 〈x2, y8〉 〈x4, y4〉 〈x8, y2〉 〈y〉
〈x2〉 〈x4, y8〉 〈x8, y4〉 〈y2〉

This shows that F2 is not accessible over its subgroups. More complicated counter examples have
been constructed over finite [9] and small [2] subgroups.

It is clear that hierarchical accessibility implies accessibility, but in general the reverse is not true.
A case when hierarchical accessibility is stronger than accessibility would be when we have a terminal
graph of groups decomposition in a maximal splitting sequence for G over C in which one of the vertex
groups splits non-trivially but non-compatibly over C.

2C Some Results

The first result to do with accessibility (before it got that name) is Grushko’s Theorem (1940) which
concerns free products, i.e. amalgamated products over the class of trivial groups.

Theorem II.22 (Grushko’s Theorem). Let rk(G) denote the minimum number of generators of G.

rk(G1 ∗G2) = rk(G1) + rk(G2)

Given any graph of groups decomposition G of a group G with trivial edge groups, then mapping the
vertex groups to {1} induces a surjection G 7→ Fβ1

where β1 is the first Betti number of the underlying
graph of G. Hence β1 is bounded by rk(G) [3, Remark 2], and so G can be decomposed as at most
rk(G) free products and HNN extensions. Hence finitely generated groups are hierarchical accessible
over trivial edge groups.

As mentioned in Example II.21 finitely generated groups tend not to be accessible over larger classes
of groups, however there are good results for finitely presented groups. In 1985 M.J. Dunwoody was able
to prove accessibility of finitely presented groups over finite subgroups [10], we shall discuss this proof in
detail in the next chapter. In 1991 M. Bestvina and M. Feighn proved accessibility of finitely presented
groups over the class of small subgroups by a careful analysis of each of the cases in Section 1B using
a technique called folding [3]. Most recently L. Louder and N. Touikan proved hierarchical accessibility
of finitely presented groups over slender edge groups [13]. An important tool in this later work is the
construction of so-called JSJ-decompositions.

Definition II.23. Let G be a group and C a class of groups. A graph of groups decomposition G of G
over C is a JSJ-decomposition of G over C if whenever G splits as A ∗H B or A∗H,t with H ∈ C, there
is some vertex group of G which contains a conjugate of H as a subgroup.

JSJ-decompositions capture in some sense all possible splittings of G over C in an essentially unique
way. They were introduced by E. Rips and Z. Sela in [18], and constructed for finitely presented groups
over slender subgroups by M.J. Dunwoody and M.E. Sageev [11].

In the final chapter we shall discuss the work of M.L. Mihalik and S. Tschantz who analysed the
splitting theory of a subclass of finitely presented groups called Coxeter groups (q.v. Example II.2) [16].
For such groups, graph of groups decompositions can be constructed and studied easily just by looking at
the group presentation, and we shall give a much shorter proof of the main theorem of the next chapter
in the case of Coxeter groups. Stronger accessibility results and JSJ-decompositions of Coxeter groups
have also been studied in a similar way [15, 17].
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III Dunwoody Accessibility of
Finitely Presented Groups

Stallings’ Theorem forms the starting point of M.J. Dunwoody’s proof of the accessibility of finitely
presented groups over finite subgroups. In fact the result applies to almost finitely presented groups.

Definition III.1. A group G is almost finitely presented if there is a connected simplicial complex
K with H1(K,Z2) = 0, such that G acts on K freely and G\K is finite.

All finitely presented groups are almost finitely presented, as can be seen by considering the action of
G on its Cayley 2–complex (see the paragraph after Example I.5), however the converse is not true. The
relevance of the cohomological condition will be made concrete in Section III.1 below. In this chapter
we shall prove the following accessibility theorem due to M.J. Dunwoody.

Theorem III.2. [10, Theorem 5.1] Let G be an almost finitely presented group, then G is accessible
over finite groups.

For splittings over finite groups there are no compatibility issues, hence it is sufficient to show that
there is a G-tree T with all edge stabilisers finite such that all vertex stabilisers have at most one end
[19, Lemma 7.1]. The way this is done is broadly as follows. Consider a 2–complex K satisfying the
conditions above and cut this up equivariantly along generalised essential closed curves (called tracks)
which “separate ends”. The dual graph to this complex with respect to these tracks is a G-tree, so a
separation of the ends ofK corresponds to a splitting ofG. The final ingredient is to use the combinatorics
of G\K to bound the number of essentially different tracks which separate K, and thus bound the number
of edges in the associated graph of groups.

III.1 Tracks

We want to generalise the notion of simple closed curves in a surface to a simplicial 2–complex K.
Throughout let |K| denote the geometric realisation of K.

Definition III.3. Let K be a 2–complex, a track is a subset t of |K| which satisfies the following:

1. t is connected,

2. For each 2–simplex σ of K, t∩ |σ| is a disjoint union of finitely many straight lines joining distinct
edges of |σ|, and

3. For γ a 1-simplex of K which is not a face of a 2–simplex, either t ∩ |γ| = ∅ or t is a single point
in the interior of |γ|.

It follows from this definition that if more than one 2–simplex meet in a face containing a point of
a track t then each of those simplices contains a line segment belonging to t which meets that point,
see Figure III.1a. As well as generalising closed curves we also want to generalise whether a regular
neighbourhood of such a curve is an embedded annulus or Möbius band.

Definition III.4. Let K be a 2–complex, a band is a subset B of |K| which satisfies the following:

1. B is connected,

2. For each 2–simplex σ of K, B ∩ |σ| is a disjoint union of finitely many components, each of which
is bounded by two closed intervals in the interiors of distinct faces of |σ| together with the two
disjoint lines joining the end points of these intervals, and

3. For γ a 1–simplex of K which is not a face of a 2–simplex, either B ∩ γ = ∅ or B is an interval in
the interior of γ.
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(a) An example of a track t restricted to three
2–simplices which meet in a single edge.

(b) An example of a band restricted to a 2–
simplex.

Figure III.1

Given a band B, q.v. Figure III.1b, we can obtain a track t(B) by joining the midpoints of the components
of B ∩ |K(1)| by straight lines in the appropriate 2–simplices, and conversely we can obtain a band from
a track t by taking an ε-neighbourhood.

A band B is untwisted if it is homeomorphic to t(B)× [0, 1], so ∂B has two boundary components
each homeomorphic to t(B). Otherwise we say that B is twisted, in which case ∂B double covers t(B).
Similarly we say a track t is (un)twisted if there is a band B which is (un)twisted such that t(B) = t.
Two tracks t1 and t2 are parallel if there is an untwisted band B such that ∂B = t1 ∪ t2.

We shall now explain the significance of the cohomological condition in the definition of almost finitely
presented groups. It is clear that a twisted track cannot separate |K|, in addition we have the following.

Proposition III.5. [10, Proposition 2.1] Let K be a 2–complex, H1(K,Z2) = 0 if and only if K contains
no twisted tracks. More generally suppose rank(H1(K,Z2)) = β is finite and let T = {t1, . . . , tn} be a
set of disjoint tracks. Then |K| −

⋃
i ti has at least n− β components.

Proof. Let t be a track and define a 1–cochain z(t) as follows: for a 1–simplex γ, z(t)γ = #(|γ|∩t) mod 2.
For a 2–simplex σ, ∂|σ| ∩ t has an even number of points, hence δz(t) = 0 so z(t) is a 1–cocyle. z(t) is
a coboundary if and only if there is f ∈ H0(K,Z2) such that z(t)γ = (δf)γ = fv1 + fv2 where γ is a
1–simplex with endpoints v1 and v2. z(t)γ = 1 if and only if locally v1 and v2 are on “opposite sides”
of t, and fv1 + fv2 = 1 if and only if exactly one of fv1 and fv2 equals 1. Thus such an f exists if and
only if the vertices of K can be “globally” partitioned into two sets, one on either side of t, i.e. if and
only if t separates |K|, and hence is untwisted.

Thus z(t) is an non-zero element of H1(K,Z2) if and only if t is twisted. Moreover since no non-
empty disjoint union of twisted tracks separates |K|, the corresponding elements of H1(K,Z2) are linearly
independent. The proposition is now clear. �

We can use this proposition to bound the number of disjoint non-parallel tracks in a finite 2–complex.
This is in analogy with bounding the number of disjoint closed curves in a surface, no two of which bound
an annulus. This is the bound which is used to prove accessibility.

Theorem III.6. [10, Theorem 2.2] Let L be a finite 2–complex and define n(L) = 2β + vL + fL where
β = rank(H1(K,Z2)), vl is the number of vertices, and fL is the number of 2–simplices. Suppose
t1, . . . , tk are disjoint tracks in |L|, if k > n(L) then there are indices i 6= j such that ti and tj are
parallel.

Proof. Consider a 2–simplex σ of L, and let D be the closure of a component of |σ| −
⋃
i ti; D is a disc.

We say D is good if ∂D ∩ ∂|σ| consists of two components in distinct faces of σ. If D is not good and
there is just one component then its closure must contain a vertex of σ, otherwise D has three boundary
components in ∂|σ| and is “central” in |σ|, see Figure III.2.

If k > n(L) then |L| −
⋃
i ti has more than vL + fL + β components by the previous proposition. At

most vL+fL of these components are unions of discs which are not good, and hence are discs themselves,
leaving at least β + 1 bands. Since |L| contains at most β twisted bands, at least one of these bands is
untwisted, and its boundary consists of two tracks ti and tj which are parallel. �
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Figure III.2: A 2–simplex containing a collection of disjoint tracks. The shaded regions correspond to
discs which are not good.

This next result is clear (by considering Figure III.1a or III.2).

Proposition III.7. [10, Proposition 2.3] Let K be a 2–complex, and J ⊂ |K(1)| − |K(0)| be a finite
collection of points which satisfies the following. For each 2–simplex σ let ji ≥ 0 be the number of points
of J in each edge of |σ| for i = 1, 2, 3. We require j1 + j2 + j3 = 2m for some integer m (so that there
is an even number), and ji ≤ m for each i (so that no edge has more than half the points). Then there
exists a unique set of disjoint tracks T in |K| such that |K(1)| ∩

⋃
T = J .

The conditions on the numbers ji are the obvious necessary conditions for such a set T to exist. If
we have a collection of tracks which intersect, after possibly perturbing them so that the do not intersect
in |K(1)| we can replace this collection with a collection of non-intersecting tracks.

III.2 Minimal Tracks

From now on we shall assume that we have a connected 2–complex K with H1(K,Z2) = 0, in particular
it contains no twisted tracks, or in other words, all tracks separate |K|. For our purposes we do not want
to consider arbitrary tracks. Thinking back to the motivation in terms of graphs of spaces, suppose two
of those spaces are joined by a cylinder. If we choose a simple closed curve in the cylinder which separates
these two spaces, this corresponds to a splitting of the fundamental group over Z. In particular we need
to choose an essential simple closed curve, one that does not bound a disc. Also we want to exclude
unnecessarily complicated closed curves which maybe double back on themselves, or wrap around several
times. We generalise this to tracks by only considering minimal tracks.

Definition III.8. For a track t in |K| let ||t|| = #(|K(1)| ∩ t). Such a track is minimal if:

1. ||t|| is finite,

2. The two components of |K| − t each contain infinitely many vertices, and

3. If t′ is another track satisfying the above, then ||t′|| ≥ ||t||.

When a minimal track t exists we set m(K) = ||t||.

Remark III.9. If t is a minimal track which meets a 2–simplex |σ| in |K| then their intersection consists
of a single line segment. t can be thought of as a topological graph (with vertices t ∩ |K(1)|), and a
band associated to t, which by our hypothesis is untwisted, can be “thickened” to be the union of all
2–simplices containing a point of t. This subcomplex is homeomorphic to the product of the graph t, and
the interval [0, 1] which we shall call the finite piece associated to t (this name follows the definition of
slender pieces in [11]).

If U is a set of vertices of |K|, set U∗ = |K(0)| − U to be its complementary set of vertices and let
w(U) be the number (possibly infinite) of edges of |K| which have one vertex in U and the other in U∗

(we say such an edge joins U and U∗). The next result characterises the existence of a minimal track
based on the obvious conditions on U , U∗ and w(U).

Proposition III.10. [10, Proposition 3.1] |K| contains a minimal track t if and only if there is a set
of vertices of |K|, U , such that U and U∗ are infinite, but w(U) is finite.
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Proof. The forward direction is clear, for the converse, let J ⊂ |K(1)|− |K(0)| be a set of points obtained
by choosing a single point in each edge joining U and U∗. J satisfies the conditions of Proposition III.7
so we get a disjoint collection of tracks T , with ||t|| finite for each t ∈ T . If all of the tracks failed the
second condition in the above definition it is easy to see that necessarily one of U or U∗ is finite, a
contradiction. Hence one of the tracks in T satisfies the second condition, so there must exist a minimal
track. �

If we have U as in the proposition so that there exist minimal tracks, then it is clear thatm(K) ≤ w(U).
Moreover if we happen to have equality then T as constructed in the proof must consist of a single min-
imal track. Compare this theorem to the definition of ends (Definition II.6), and it is clear that K has
more than one end if and only if there exist minimal tracks in |K|.

Theorem III.11. [10, Theorem 3.3] Let S = {t1, . . . , tn} be a set of not necessarily disjoint minimal
tracks in |K|, such that no two intersect in |K(1)|. If J = |K(1)| ∩ (

⋃
S) and T is the set of disjoint

tracks coming from Proposition III.7, then T consists of n disjoint minimal tracks.

Proof. Consider first the case n = 2, if t1and t2 are disjoint we are finished, so assume they intersect.
We must have that T consists of at most two tracks, otherwise one of the tracks t′ ∈ T would have
||t′|| < ||t1|| = ||t2||, contradicting minimality. For similar reasons, if T contains exactly two tracks then
both the resulting tracks must be minimal. Hence we need to rule out the possibility that T = {t} with
||t|| = #J = 2m(K). If t1 and t2 have the same associated finite piece (q.v. Remark III.9), then T must
contain two tracks because this finite piece is untwisted (in this case t1 and t2 are just “perturbations”
of one another, in particular the tracks in T are parallel). Hence we are safe to assume that t1 and t2 do
not have the same finite pieces.

Let |K(0)| = U t U∗ be the partition of the vertices of |K| associated to t1, and similarly let
|K(0)| = V t V ∗ be associated to t2, and assume we have chosen to label these sets such that U ∩ V and
U∗ ∩ V ∗ are both infinite. Let |σ| be a 2–simplex in which t1 and t2 intersect, then the picture will be
as in Figure III.3. The dashed lines represent the segments in

⋃
T which replace those which intersect.

By our assumptions there is at least one 2–simplex which looks like Figure III.3b and hence there is a
component of

⋃
T which separates U ∩V from (U ∩V )∗, and a component which separates U∗∩V ∗ from

(U∗ ∩ V ∗)∗. Moreover these two pairs of sets of vertices are distinct, hence T must contain two distinct
components.

The case for general n follows by induction on N =
∑
i,j #(ti ∩ tj), write Nij = #(ti ∩ tj). If N = 0

the tracks are already disjoint so there is nothing to prove. Assume N > 0, and choose indices p < q
such that Npq > 0. By the first part of the proof there are disjoint minimal tracks t′p and t′q such that

(t′p∪ t′q)∩|K(1)| = (tp∪ tq)∩|K(1)|. Set t′i = ti if i 6∈ {p, q} and let S′ = {t′1, . . . , t′n}, N ′ij = #(t′i∩ t′j) and

N ′ =
∑
ij N

′
ij . We claim N ′ < N which completes the proof since J = |K(1)| ∩ (

⋃
S′). Indeed it is clear

that N ′pq = 0; let i 6∈ {p, q} be an index and suppose ti ∩ (t′p ∪ t′q) is a single point in some 2–simplex |σ|,
then ti must intersect tp or tq in |σ|. If ti ∩ (t′p ∪ t′q) consists of two points then ti must intersect both tp
and tq in |σ|, see Figure III.3. Hence N ′ip +N ′iq ≤ Nip +Niq and N ′ < N . �

U ∩ V

U∗ ∩ V ∗

t1

t2

(a)

U ∩ V

U∗ ∩ V ∗ U∗ ∩ V

t1
t2

(b)

Figure III.3: The two possibilities for a 2–simplex in which t1 and t2 intersect. The segments of these
tracks are replaced by the dashed segments in

⋃
T , and the separated sets of vertices are indicated by

dotted lines.
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Minimality is crucial to ruling out the possibility that T = {t} consists of a single “fused” track;
non-minimal counter-examples are very easy to write down. Now let G be a group acting freely on
K. The final ingredient before we can prove accessibility is to construct a disjoint G-equivariant set of
minimal tracks.

Theorem III.12. [10, Theorem 4.1] If |K| contains a minimal track t, then there is a minimal track t′

such that Gt′ (the G-orbit of t′) is a set of disjoint minimal tracks.

Proof. For each g ∈ G let tg be a minimal track which is an ε–perturbation of gt so that no two tracks
tg1 and tg2 intersect in |K(1)|. If we let J = |K(1)| ∩

⋃
{tg}g∈G then #(J ∩ |γ|) = #(J ∩ g|γ|) <∞ for

all g ∈ G and γ an edge of K, hence we can choose the tg’s so that J is G-equivariant. We can now
apply Proposition III.7 to get a G-equivariant set of disjoint tracks T . We want to conclude that these
are minimal, but in general there are infinitely many so we cannot immediately apply Theorem III.11.

Let t ∈ T be a track, we shall show it is minimal. Since ||t|| is finite, the finite piece of t must be
locally finite. More generally there is a locally finite subcomplex Kf of K such that

⋃
T ⊂ |Kf |. Let

K0 be the finite subcomplex of Kf consisting of all simplices with a vertex a (combinatorial) distance at
most m(K) from a point of t. If a minimal track t′ intersects the finite piece of t, then t′ ⊂ |K0|. Let A0

be the finite set of tracks tg such that tg ∩ |K0| 6= 0 and set J0 = |K(1)| ∩
⋃
A0. We can apply Theorem

III.11 J0 to get a set T0 of disjoint minimal tracks.

Note that J0 = J ∩ |K(1)
0 | so any component of T which intersects the finite piece of t is a component

of T0 which is minimal; in particular t is minimal, whence the theorem. �

As a brief aside, we can use the above theorem to prove one direction of Stallings’ theorem (Theorem
II.12) for almost finitely presented groups: if such a group has more than one end, it splits over a finite
subgroup.

Proof of Stallings’ Theorem. Let G be an almost finitely presented group with more than one end, and let
K be a connected 2-complex on which G acts freely with finite quotient. Then by Remark II.9, e(K) > 1
and so |K| contains a minimal track by Proposition III.10. We can choose K such that H1(K,Z2) = 0
and so applying Theorem III.12 we can find an equivariant set of disjoint minimal tracks T in |K| all
of which are separating. Consider the graph Γ whose vertex set is the set of connected components of
|K| −

⋃
t∈T t, and whose edge set is T . For t′ ∈ T , the two components of |K| −

⋃
t∈T t whose closures

contain t′ are the endpoints of the edge t′. The connectedness of K implies Γ is connected, and since
all tracks are separating, removing any edge separates Γ so Γ is a tree, and it is clear that G acts on
Γ. One can see that G\Γ contains a single edge labelled with the stabiliser of some t′ ∈ T , and since
||t′|| < ∞ and the action of G on K is free, the stabiliser is finite. Thus G\Γ is a non-trivial graph of
groups corresponding to a splitting of G over a finite subgroup. �

Remark III.13. The converse can also be proved using ideas about tracks. If G splits over a finite
subgroup, it has a non-trivial graph of groups G with a single edge labelled by the finite subgroup. Build
the corresponding graph of spaces X using the presentation 2-complexes as in Section I.1. Let X̃ be the
universal cover of X, on which G acts freely with finite quotient X, this can be mapped equivariantly
onto the Bass-Serre tree of G. The preimages of the midpoints of edges give rise to a disjoint set of
minimal tracks, each of which separate ends of X̃, so in particular, e(G) = e(X̃) > 1. Some details are
discussed in [11, Lemma 2.2 and Example 3].

III.3 Proof of the Theorem

Recall that we are trying to exhibit a G-tree for G almost finitely presented in which all edge stabilisers
are finite, and all vertex stabilisers have at most one end. Given an almost finitely presented group G
there is a 2–complex K on which it acts freely which contains no twisted bands. The idea is to cut up K
equivariantly and consider the dual graph. The edges correspond to minimal tracks, so their stabilisers
are finite, the vertices are obtained by cutting off the ends of |K|. We want to show (using Theorem
III.6) that we can only cut up |K| a finite number of times before we necessarily end up with connected
components which have at most one end (in which case there will no longer be minimal tracks). For this
we shall use the final, as yet unused, condition for a group G to be almost finitely presented, that G\K
is finite.
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Proof of Theorem III.2. If e(G) ≤ 1 there is nothing to do, hence assume e(G) > 1. As in the previous
proof, G acts freely on a connected simplicial complex K with H1(K,Z2) = 0, and the quotient L = G\K
is a finite simplicial complex. We can find an equivariant set of disjoint minimal tracks T = Gt1 for t1
some minimal track, and we consider the graph Γ whose vertex set is the set of connected components
of |K| −

⋃
g∈G gt1, and whose edge set is T . As before, Γ is a G-tree. If all vertex stabilisers have at

most one end then we are done, otherwise there is some vertex v of Γ whose stabiliser Gv has more than
one end.

Let C be the component of |K| −
⋃
g∈G gt1 corresponding to v, and let |Kv| be the subcomplex of

|K| consisting of all simplices (and their faces) which meet C, see Figure III.4. It is clear that Gv acts
on Kv freely, so e(|Kv|) > 1; set Lv = Gv\Kv, we would like Lv to be finite. This follows from the easy
fact that iv : Lv 7→ L induced by the inclusion Kv ↪→ K is injective on maximal simplices, together with
the assumption that L is finite. This means we can repeat the above, trying to find a splitting of Gv by
finding a minimal track t2 in |Kv|. The only thing we want to avoid is t2 intersecting one of the tracks
in the G-orbit of t1 which lies in Kv.

All translates of t1 in |Kv| are homotopic to the boundary components of their respective finite pieces,
and in particular each is homotopic to a boundary component of |Kv|. This means that firstly they are
not minimal tracks in |Kv|, and secondly no minimal track in |Kv| is parallel to a translate of t1. It
also follows that we can choose a minimal track in |Kv| which does not intersect any translate of t1.
Applying Theorem III.12 to such a track we can find a minimal track t2 in |Kv| which does not intersect
the translates of t1 and such that Gvt2 is an equivariant set of disjoint minimal tracks. This gives a
compatible splitting of Gv.

The final step is to prove that we cannot repeat this process indefinitely. We have noted that t1 and t2
are not parallel in |K|, we claim their projections are also not parallel in L. Indeed under the projection
|K| 7→ |L|, the preimage of a band in |L| must be a union of bands in |K|. Theorem III.6 now guarantees
that we cannot have an arbitrary number of non-parallel tracks in L, whence the theorem. �

C

|Kv|

t1

t2

Figure III.4: An example of a component C of |K| −
⋃
g∈G gt1 extended slightly to give the subcomplex

|Kv|, which has more than one end. t1 and its translates are shown in blue, t2 and its translates are
shown in green.

The usefulness of tracks is not limited to this result, indeed one can see from the above proof that
they are intimately related to splittings of groups. In [11] M.J. Dunwoody and M.E. Sageev use a method
called track zipping in order to construct JSJ-decompositions of finitely presented groups over slender
subgroups (recall definitions from Section II.2C). M.J. Dunwoody also used similar techniques to give
an elementary proof of an equivariant sphere theorem, a version of Theorem III.12 one dimension higher
(considering minimal essential spheres in a triangulated 3-manifold), [8]. Tracks, their properties, and
their applications are discussed further in [6, Chapter VI].
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IV Visual Decompositions of
Coxeter Groups

In this final chapter we shall discuss the splittings of Coxeter groups and their accessibility. Because
Coxeter groups are finitely presented, the results discussed in Section II.2C apply, and in particular M.J.
Dunwoody’s Accessibility Theorem. However Coxeter groups admit a particularly simple presentation
and so the theory of their splittings is very nice. Coxeter groups possess a rich theory very closely tied
to geometry, and they arise in many different areas of mathematics, making their study of independent
interest to geometric group theorists. Interestingly however, the examples of Coxeter groups which are
studied most often (spherical, Euclidean, and hyperbolic types), rarely split (they have the property
(FA)). Consequently, for the class of Coxeter groups of most interest here, geometry plays very little role
in what follows (at least in the formulation given here).

The splittings of Coxeter groups have been studied mostly by M. Mihalik and S. Tschantz, and this
chapter is based on their paper [16]. We shall discuss so-called visual splittings, those which can be read
off from the presentation. It turns out that all graph of groups decompositions of a Coxeter group are
closely related in some sense to such a visual decomposition. We will also characterise the number of
ends of a Coxeter group by looking at the presentation, and identify maximal (FA) subgroups. We shall
end the chapter by reproving Dunwoody’s accessibility result in the particular case of Coxeter groups.

IV.1 Coxeter Groups

For the general theory of Coxeter groups, consult [4] or [5].

Definition IV.1. A Coxeter group W is a group generated by reflections which acts discretely.
Coxeter groups admit a presentation of the form

W = 〈S = {s1, . . . , sk} | s2
i = 1 = (sisj)

mij ∀ 1 ≤ i < j ≤ k〉

for mij ∈ {2, 3, . . . ,∞}, where mij = ∞ means si and sj are unrelated. We call the pair (W,S) a
Coxeter system. If S′ ⊂ S is a subset of generators, the group WS′ = 〈S′〉 is again a Coxeter group with
Coxeter system (WS′ , S′); such subgroups are called visual1 subgroups of (W,S). A Coxeter system
(W,S) is specified completely up to isometry by the numbers mij , and it is convenient to represent them
diagrammatically.

Definition IV.2. Let (W,S) be a Coxeter system, its presentation diagram ν(W,S) is a labelled
graph with vertex set S, and an edge between si and sj labelled by mij unless mij = ∞ in which case
there is no edge (not to be confused with the Coxeter-Dynkin diagram which does not feature here).

Visual subgroups of (W,S) correspond to subgraphs of the presentation diagram of (W,S) which are
induced by taking the span of a subset of vertices. If ν ′ is an induced subgraph of ν(W,S), then we shall
denote the corresponding visual subgroup by Wν ′ . We shall apply the adjective “visual” throughout this
chapter to indicate properties and objects which can be visually read off from the presentation diagram.
We shall see that almost all splitting properties of Coxeter systems are visual in this sense.

Example IV.3. Common examples of Coxeter groups come from the symmetry groups of regular
polyhedra and periodic tilings. The symmetry group of the regular tetrahedron is the symmetric group
S4 generated by the transpositions (1, 2), (2, 3) and (3, 4) with presentation diagram shown in Figure
IV.1a.

As another example, consider the tiling of the hyperbolic plane shown in Figure I.4b on page 7, and
let W be the group generated by the hyperbolic reflections in the three sides of the upper central triangle,
and label these s1, s2, and s3 going anti-clockwise starting from upper left side of the triangle. The pair

1This name appears to be due to M.L. Mihalik and S. Tschantz. Most of the literature uses the term special or parabolic.
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(3, 4)

(2, 3)

(1, 2) 2

3 3

(a)

s2 s3s1

3 3

(b)

Figure IV.1

of edges corresponding to s1 and s2 intersect at an angle of π
3 so s1s2 is a hyperbolic rotation (elliptic

isometry) by 2π
3 and hence has order 3. The same is true for the pair s2 and s3. The edges corresponding

to s1 and s3 are parallel and so s1s3 is a hyperbolic translation (parabolic isometry) and so has infinite
order. The presentation diagram for (W, {s1, s2, s3}) is shown in Figure IV.1b.

The following result is due to J. Tits and the proof is by constructing a faithful representation of W
as a reflection group in a real vector space. We state it as a fact.

Proposition IV.4. [4, Corollary IV.1.3] Let (W,S) be a Coxeter system, the generators si ∈ S represent
distinct elements of W and the order of sisj in W is mij.

IV.2 Visual Splittings

Before we consider general splittings of Coxeter groups, we shall first discuss splittings over visual sub-
groups where the factors are also visual.

Definition IV.5. Let (W,S) be a Coxeter system and W a graph of groups decomposition of W . W is
a visual graph of groups decomposition of W if all vertex and edge groups are visual subgroups,
and the homomorphisms of edge groups into vertex groups are given by inclusion.

Recall from Example II.2 that Coxeter groups do not split as HNN extensions, hence any graph of
groups decomposition must be a tree of groups decomposition. It is clear that if a Coxeter system splits as
a free product with visual factors, then these factors correspond to unions of the connected components
of ν(W,S). More generally from the definition of amalgamated products we have the following.

Proposition IV.6. [16, Section 1] A Coxeter system (W,S) splits non-trivially and visually as an
amalgamated product if and only if there are proper induced subgraphs ν1 and ν2 of the presentation
diagram ν(W,S) such that ν(W,S) = ν1 ∪ν2. In this case W = Wν1

∗Wν1∩ν2
Wν2

. We say that

the subgraph ν1 ∩ν2 separates ν(W,S).

Taking ν1 =
s2s1 3

and ν2 =
s2 s33

in the previous example we have ν1 ∩ν2 =
s2

, giving
the splitting W = 〈s1, s2〉∗〈s2〉 〈s2, s3〉. This can be realised by a tree action by looking at Figure I.4b, W
acts on the same tree as SL2(Z) giving a graph of groups with two segments which we can then reduce,
see Figure IV.2.

〈s1, s2〉 〈s2〉 〈s2, s3〉
〈s2〉 〈s2〉 Reduce

〈s1, s2〉 〈s2, s3〉
〈s2〉

Figure IV.2

Definition IV.7. A visual subgroup WS′ of a Coxeter group with Coxeter system (W,S) is called a
simplex subgroup if its presentation diagram is a complete subgraph of ν(W,S). S′ ⊂ S is called a
simplex.

It is clear from Proposition IV.6 that the only visual graph of groups decomposition of a simplex
subgroup is the trivial one, such subgroups might be called visually (FA) subgroups of W ; a priori this
is a weaker property that being (FA), but they are in fact equivalent for visual subgroups (q.v. Theorem
IV.14). We can characterise visual decompositions as follows.
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Lemma IV.8. [16, Lemma 4] For a Coxeter system (W,S), a graph of groups G is a visual graph of
groups decomposition for W if and only if the following are satisfied:

1. The underlying graph of G is a tree, all vertex and edge groups of G are visual subgroups of W ,
and the homomorphisms of edge groups into vertex groups are inclusions,

2. ν(W,S) is the union of the presentation diagrams of the vertex groups of G, and

3. For each generator s ∈ S, the subgraph of G consisting of all vertices and edges whose label contains
s is connected.

Proof. For the forward implication, 1 is clear. Suppose 2 did not hold and recall the definition of the
fundamental group of a tree of groups. If a vertex of ν(W,S) is not represented in the presentation
diagrams of the vertex groups then π1(G) does not contain the corresponding generator so cannot be
isomorphic to W (q.v. Proposition IV.4). Alternatively suppose all the vertices were represented but
there is an edge which is not, then π1(G) is missing the corresponding relation so again cannot be
isomorphic to W . In order to prove 3, recall by Proposition I.16 that we can lift the graph of G to a
subtree of the Bass-Serre tree for G, so that the labels are equal to the stabilisers. Let V and U be two
vertex labels which contain s, and let v and u be their lifts. Then s stabilises v and u, and hence the
unique geodesic path between them, which descends to a path in G.

To prove the converse we need to show that if G satisfies 1–3, then π1(G) is isomorphic to W . By 2
every generator of W is in π1(G) and there are no extra generators from stable letters since the underlying
graph is a tree. If a generator appears in more than one vertex group then 3 guarantees that they are
identified in π1(G). Finally π1(G) has exactly the relations of W by the definition of the fundamental
group and 2. Hence we have the required isomorphism. �

The main result of this section is the following theorem which says that any graph of groups decom-
position of a Coxeter group W induces a visual graph of groups decomposition of W .

Theorem IV.9. [16, Theorem 1] Let (W,S) be a Coxeter system and G a graph of groups such that W
is a subgroup of π1(G). Then W has a visual graph of groups decomposition W such that vertex (resp.
edge) groups of W are subgroups of conjugates of vertex (resp. edge) groups of G. Moreover W can be
chosen so that each visual subgroup of W which is a subgroup of a conjugate of a vertex group of G is a
subgroup of a vertex group of W.

If W satisfies the full conclusion of the theorem then we say that it is a (W,S)-visual decomposition
coming from G.

Proof. Let Γ̃ be the Bass-Serre tree associated to G, and construct a visual graph of groups decomposition
W′ of W with this (in general infinite) tree as its underlying graph. Recall from the end of Chapter I
our notational conventions for the vertices and edges of Γ̃ and the groups of G. For each vertex v (resp.
edge e) of Γ̃ take the vertex (resp. edge) group of W′ to be the visual subgroup of W generated by those
s ∈ S which stabilise v (resp. e). It is clear that this is a subgroup of a conjugate of V (resp. E). If
s stabilises an edge, since the action of π1(G) is without inversion, then s stabilises the end points of
that edge so we can take the homomorphisms to be inclusion. Each generator s ∈ S has order 2 and so
generates a finite group which in particular has the property (FA) so s fixes a vertex of Γ̃. If si and sj
are distinct generators in S which are connected by an edge in ν(W,S), then the order of sisj , mij , is
finite and they generate a finite subgroup of W (the dihedral group of order 2mij), thus this subgroup
fixes a vertex. Hence every vertex and edge of ν(W,S) is represented by a vertex or an edge in the
presentation diagram of a vertex group. Finally if s stabilises two distinct vertices then it must stabilise
the geodesic path between them, and so the subgraph of Γ̃ stabilised by s is a tree. It now follows from
Lemma IV.8 that W′ is a visual graph of groups decomposition of W .

We have established the first part of the theorem. For the moreover clause, note that if WS′ is a
visual subgroup of a conjugate of a vertex group of G then it stabilises a vertex of Γ̃ and so will be
a subgroup of a vertex group of W′. This proves the theorem, however the graph of groups we have
constructed is in general infinite, but since W is finitely generated, it will not be minimal. However there
is a finite set of vertices of Γ̃ whose stabilisers between them represent all vertices and edges of ν(W,S),
and even all visual subgroups mentioned in the moreover clause. Taking the subtree of Γ̃ spanned by
these vertices gives a finite visual graph of groups decomposition W of W satisfying the theorem, and
this can be reduced to give a reduced decomposition satisfying the theorem. �
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IV.3 Ends and (FA) Subgroups

Recall Stallings’ Theorem characterising the splittings of groups over finite subgroups. We can use this
to visually characterise when a Coxeter group has more than one end. Recall that e(W ) is independent
of the choice of Coxeter system.

Proposition IV.10. [16, Corollary 16] Let W be a Coxeter group with Coxeter system (W,S), then the
following are equivalent:

1. e(W ) > 1,

2. W decomposes as a non-trivial visual amalgamated product WS1 ∗WS3
WS2 for Si ⊂ S for each i

and with WS3
finite, and

3. ν(W,S) contains a separating subgraph which is the a presentation diagram of a finite Coxeter
group.

Proof. 1 ⇒ 2: Stallings’ Theorem says that W splits non-trivially over a finite subgroup, and this
must be as an amalgamated product A ∗C B since W admits no decompositions as an HNN extension.
Apply Theorem IV.9 to this splitting to get a visual decomposition of W as an amalgamated product
WS1

∗WS3
WS2

. WS3
is a subgroup of a conjugate of C and so must be finite, and WS1

and WS2
are

subgroups of conjugates of A and B, in particular they are not the whole of W so this decomposition is
non-trivial. 2 ⇒ 1 follows immediately from Stallings’ Theorem. 2 ⇔ 3 is a restatement of Proposition
IV.6. �

The finite, or equivalently 0–ended, Coxeter groups have been classified in terms of their presentation
diagram [4, Theorem VI.4.1], so in order to visually determine e(W ) we just need to be able to distinguish
the 2–ended and ∞–ended cases from the presentation diagram. This is done using Theorem II.11.

Proposition IV.11. [16, Corollary 17] A Coxeter group W with Coxeter system (W,S) is 2–ended if
and only if ν(W,S) contains a separating subdiagram ν0 such that Wν0

is finite, ν(W,S)−ν0 consists

of two vertices, each of which is connected to every vertex of ν0 be an edge labelled 2.

If the second half of this proposition is satisfied, the two vertices which are separated generate a
subgroup isomorphic to D∞ of finite index, which in turn contains a copy of Z of finite index.

We want to say something about (FA) subgroups of Coxeter groups. We make the following defini-
tions.

Definition IV.12. Let (W,S) be a Coxeter system and S′ a subset of S. The link of S′, lk(S′), is the
subset of S joined to a vertex of S′ in ν(W,S). The star of S′ is st(S′) = S′ ∪ lk(S′).

Proposition IV.13. [16, Lemma 25] Let (W,S) be a Coxeter system and let G be an (FA) subgroup of
W , then G is a subgroup of a conjugate of a simplex subgroup of (W,S).

Proof. If ν(W,S) is a complete graph we are done, so assume not, and let s, s′ ∈ S be unrelated. Then
lk(s) separates s and s′ so W = Wst(s) ∗Wlk(s)

WS−{s}. Since G is an (FA) subgroup, it must be a
subgroup of a conjugate of Wst(s) or WS−{s} (q.v. Property 1, p. 9). Keep splitting until the lemma is
realised, this will happen after at most #S <∞ splittings. �

Theorem IV.14. [16, Theorem 26] The maximal (FA) subgroups of a Coxeter group W are the conju-
gates of the visual subgroups of W generated by maximal simplices in ν(W,S) for some (and equivalently
any) Coxeter system (W,S) of W .

Sketch Proof. Simplex subgroups have the property (FA) because if they split non-trivially, then by
Theorem IV.9 they would split non-trivially and visually which we know they do not. Hence also their
conjugates have the property (FA). By Lemma IV.13 we need only worry about simplex subgroups. The
theorem follows from the easy fact which we leave as an exercise: if A is a subgroup generated by a
maximal simplex which is contained in wBw−1 for B another simplex subgroup, then A = B and w ∈ B
[16, Corollary 13]. �

Since these results are independent of the choice of Coxeter system for (W,S), they have applications
to the isomorphism problem of Coxeter groups, which is discussed in [16, Section 6–7].
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IV.4 Accessibility of Coxeter Groups

We finish the chapter by reproving Dunwoody’s accessibility result for Coxeter groups. Unlike Dun-
woody’s proof, the bound used to prove accessibility over finite edge groups is completely algebraic.
Roughly speaking we associate a “density” to a graph of groups decomposition of a Coxeter group by
counting the number of certain finite and visual subgroups of vertex groups, and show that decomposi-
tions cannot become arbitrarily diffuse. The key step is showing that this density strictly decreases if we
non-trivially and compatibly split a vertex group, for which the following lemma is essential.

Lemma IV.15. [16, Lemma 20] Let (W,S) be a Coxeter system and let W be a graph of groups decom-
position of W with finite edge groups. Suppose a vertex group of W splits non-trivially as A ∗C B with C
finite. Then there is a visual subgroup or a subgroup of a finite visual subgroup of W which is contained
in a conjugate of B but not in any conjugate of A (and with A and B swapped).

Proof. Let W′ be the graph of groups obtained by replacing the split vertex in W by a segment corre-
sponding to A ∗C B (q.v. Definition II.15). Let W′vis be a (W,S)-visual graph of groups decomposition
coming from W′ as in Theorem IV.9, and let Γ̃ be the Bass-Serre tree of W′vis. The intersection of any
conjugates of A and B, or of distinct conjugates of B, is contained in an edge group (since this intersec-
tion stabilises a geodesic path in Γ̃). Hence any such intersection must be finite so if any infinite vertex
group of W′vis lies in a conjugate of B, it cannot also lie in a conjugate of A and we are done. So now
assume that there is no infinite vertex group lying in a conjugate of B; from the action of B on Γ̃ we get
a reduced graph of groups decomposition of B with vertex and edge groups contained in conjugates of
vertex and edge groups of W′vis, in particular all edge groups are finite. We claim that all vertex groups
are finite as well. If not, let B1 be an infinite vertex group, then it is contained in a conjugate of an
infinite vertex group of W′vis which is in turn contained in a conjugate of a vertex group of W′ other than
B. This is impossible by the argument above.

Thus the vertex groups of the graph of groups decomposition of B are finite, and moreover they are
conjugate to subgroups of finite special subgroups. Replace the vertex B in W′ by this graph of groups,
and after reducing if necessary, we have a new graph of groups decomposition W′′ in which A is adjacent
to a finite subgroup B1 of B via an edge labelled C1(= C if no reduction took place) which is properly
contained in B1. Now B1 ≤ B cannot be contained in a conjugate of A because otherwise B1 would
stabilise a path on the Bass-Serre tree of W′′ to a coset of A and thus stabilise a coset of C1. Then B1

would be contained in a conjugate of C1 which has strictly fewer elements. �

Theorem IV.16. [16, Theorem 21] Coxeter groups are accessible over finite groups.

Proof. Let (W,S) be a Coxeter system. For G ≤ W any subgroup, let n(G) be the number of vi-
sual subgroups or subgroups of finite visual subgroups which are contained in any conjugate of G. Then
1 ≤ n(G) ≤ n(W ) <∞. For W a finite graph of groups decomposition ofW , let c(W) = (cn(W ), . . . , c2, c1)
where ci is the number of vertex groups G of W with n(G) = i. Let ≺ be the lexicographical ordering of
n(W )–tuples of non-negative integers which is a well-ordering. If W reduces to W′, then no ci increases,
and some ci must decrease. If a vertex group G of W splits as A ∗C B with C finite to produce a new
decomposition W′′ then every subgroup of a conjugate of A or B is a subgroup of a conjugate of G. How-
ever by the previous lemma there is some visual subgroup, or subgroup of a finite visual subgroup, which
is contained in a conjugate of B and so of G, but not A. Hence n(A) < n(G), and similarly n(B) < n(G).
Thus c(W′′) ≺ c(W) since cn(G) decreases by 1, and the only other terms which change are cn(A) and
cn(B) which are later in the tuples. Since ≺ is a well-ordering, there can be no infinite splitting sequence
of graph of groups decompositions of W over finite subgroups, thus W is accessible. �

The proof of Lemma IV.15 shows how useful Theorem IV.9 is allowing one to pass to visual decom-
positions in order to study general graphs of groups; indeed all decompositions are in some sense close
to visual decompositions [16, Theorem 2]. The results proved here form the basis for strong accessibility
results [15] and JSJ-decompositions [17] for Coxeter groups. This proof of accessibility over finite groups
is much shorter than Dunwoody’s proof, and the bounds can in principle be calculated explicitly. Ev-
erything in this chapter with the exception of Section IV.3 (but including Propositions IV.10 and IV.13)
immediately generalises to finitely presented groups G which have a presentation 〈A | R〉 satisfying:
(a) taking any proper subset of A or R defines a non-isomorphic group (c.f. Proposition IV.4); (b) A
consists of torsion elements (c.f. Lemma II.3); and (c) if A′ ⊂ A and there is r ∈ R which contains a or
a−1 for each a ∈ A′ and no other generators, then 〈A′〉 is a finite subgroup (c.f. proof of Theorem IV.9).
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