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Abstract

We introduce the notions of geometric and combinatorial reflection groups and discuss their
geometric and combinatorial properties respectively. We introduce Coxeter groups

contemporaneously with combinatorial reflection groups, and establish their equivalence. Via
the construction of the so-called reflection representation of a Coxeter group, we shall show
the equivalence of all three types of group, and so bring to bear the power of geometric
intuition on the combinatorial questions of Coxeter groups. Following this we discuss two
constructions of simplicial complexes from the combinatorial definition of a Coxeter group
which link together the geometric and algebraic structure, and which are much easier to
handle than the reflection representation. We shall establish some of their properties, and

introduce the application to Tits buildings.



Preface

The study of Coxeter groups forms perhaps the most natural bridge between Algebra and
Geometry. Subjects like Algebraic Geometry and Algebraic Topology have names which suggest
that they fulfil this role; however their abstractness draws them away from the classical subject
of Geometry, certainly as it was known to the ancients, since they deal with with the zero-
loci of multi-variable polynomials and abstract topological spaces respectively. Instead Coxeter
groups — which might more illustratively be called ‘discrete groups generated by reflections’
as H. S. M. Coxeter himself called them [12], or simply called abstract reflection groups —
describe the symmetries of the geometric objects with which we are familiar, even from primary
school in some cases: regular n-gons, tessellations or tilings of the plane, and platonic solids;
but their study conveniently allows us to examine similar structures in arbitrary dimensions,
and in non-flat geometries.

This gives some motivation as to why we might be interested in studying Coxeter groups
from the point of view of Geometry. What of the Algebra? Certainly Algebra is indispensable
in telling us about the behaviour of the Geometry, but is it merely a tool? The bridge between
Geometry and Algebra goes both ways. Coxeter groups have some very interesting algebraic
properties, particularly combinatorial. For example they admit (a number of) simple solutions
to the Word Problem, and a solution to the Conjugacy Problem [22]. There are also a number
of constructions of simplicial complexes purely from the combinatorial definition of the group,
which then manifest the algebraic structure of the group geometrically, and which allow for
simple geometric proofs of otherwise opaque and difficult combinatorial results.

The main aim of this report is to clearly highlight the interplay between Geometry and
Algebra in the study of Coxeter groups. Indeed, the first two chapters are (almost) logically
independent. In the first chapter we shall consider geometric reflection groups and how they act
of a real vector space. In particular we shall see that they partition the space into regions called
chambers, and the adjacency relations between these chambers forms a natural way to talk
about the group structure. We shall develop the theory in the first instance for finite reflection
groups, but later on generalise to infinite groups which act on the whole vector space. We shall
see that almost all of the theory goes through, however there is a fundamental difference in the
way we set up the reflections which causes some profound differences, and to highlight these,
we discuss the two cases separately. In the second chapter we consider combinatorial groups,
and derive a reasonable “axiom” which must be satisfied for a combinatorial group to be like
a reflection group. We also give the definition of a Coxeter group as a combinatorial group,
which at first seems largely unrelated to reflection groups. The main body of this chapter is
devoted to studying some combinatorial properties of these Coxeter groups centred around a
notion of length which we can define on the group. With some of this machinery under our belt,
we are able to prove the equivalence of the definitions of a Coxeter group and a combinatorial
reflection group.

The third chapter is the bridge between the first two chapters. Following J. Tits, we define
a canonical “reflection” representation of a Coxeter group (on a real vector space) which looks
very similar to the structures with which we were concerned in the first chapter. With some
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effort we shall be able to prove a simple looking theorem which has profound consequences,
that the representation is an isomorphism between a Coxeter group and a geometric reflection
group. This means that the theory we built up in the first chapter can be applied to Coxeter
groups, in particular the intuition of Geometry can be brought to bear on abstract Algebra.
The reflection representation will allow us to solve the Word Problem in Coxeter groups, and
classify all finite Coxeter groups up to isomorphism. We finish this chapter by looking back at
the combinatorial results we proved in the second chapter. With the language of chambers, and
geometric intuition, we shall be able to reduce almost 10 pages of proofs to a single page.

Having seen the power of Geometry and the reflection representation, the fourth chapter is
devoted to the construction of two related simplicial complexes which do the same job as the
reflection representation, but are much easier to calculate and work with. In the first instance,
the Coxeter complex corresponds to exactly the chambers of the reflection representation. The
Coxeter group acts on it in a natural way by reflections, but crucially it can be defined in terms
only of certain “special” subgroups of the Coxeter group. This lays bear to what extent the
Coxeter complex encodes the algebraic structure of the group in geometrical structure. We
shall be able to introduce an application of Coxeter complexes called buildings, which are very
important in the study of Lie groups and algebras. They also relate closely to a very broad
class of incidence geometries. The other simplicial complex is a later construction called the
Davis complex. It is a refinement of the Coxeter complex by removing the messy infinite parts
of a Coxeter group, and leaving only the well-behaved finite parts. This shares many of the
characteristics of the Coxeter complex, but in particular admits a proper action of the Coxeter
group by quasi Euclidean isometries, which the Coxeter complex does not.

This report comprises material drawn from many sources, and brings together some of the
theory of Coxeter groups which is normally found confined to separate books. We have provided
references throughout to results and proofs. Results where only the statement and not the proof
is referenced carry my own proof; results with no reference are my own. We have provided notes
at the end of each chapter mentioning specific instances. Most of the examples, and all of the
diagrams in this report are my own, produced using the Tikz package in LATEX. We have
also provided an index and glossary of notation for the convenience of the reader. We have
also not been shy in adding footnotes liberally throughout the text giving historical context,
more detailed explanation, and further observations. With a few notable exceptions which are
clearly signposted, the exposition throughout is my own. I have endeavoured to add justification
and fill in the details of proofs which I thought we too brief, and have added many examples
and diagrams throughout to help explain the ideas. The material is supported by extensive
appendices on the background theory of simplicial complexes and circle inversions, which are
particularly applicable to the final chapter . We have attempted to make the material accessible
to an undergraduate with “reasonable” background, however there are a very few points where
proofs require some more advanced Topology and Linear Algebra. These are kept to a minimum,
and there will be little loss if these passages are skipped.

We shall finish this preliminary discussion by mentioning a few of the application and fields
in which Coxeter groups arise. They are key to the study of Lie Groups and Lie Algebras, so
much so that Bourbaki devotes chapters IV–VI of their discussion of these entirely to Coxeter
groups [6], and indeed the classification of finite Coxeter groups and Simple Lie Algebras are
very similar. Coxeter groups admit a partial ordering of their elements called the Bruhat order,
which forms a natural language for the combinatorial properties of Coxeter groups, but also
links closely to the geometry; the construction of certain cell complexes relating to the Coxeter
group; and to Lie Groups [4, chapter 2]. The Bruhat order is also crucial to the definition of
the so-called Kazhdan-Lusztig polynomials associated to a Coxeter group. These are a family
of polynomials with integer coefficients indexed by pairs of group elements, and which play
important roles in Algebraic Geometry and Representation Theory [4, chapter 5].
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We have restricted ourselves in this last paragraph mainly to mentioning fields relating to
the combinatorics of Coxeter groups, since the deeper theory we study in this text will lean
towards the the more geometrical aspects.

Acknowledgements

My thanks go to my supervisor, Pavel Tumarkin, for his guidance throughout the project, and
in particular for his valuable advice on the first draft of this report. Gratitude is also due to
my fellow students on this project for there support, and for the collaboration in understanding
ideas. In addition I would particularly like to thank Harsh Joshi for his constant companionships
and support throughout this project; he consented to act as guinea pig for a lot of the way ideas
are explained here, and he gave much good advice about the overall structure.

iii



Contents

Preface i

Notation vi

List of Figures viii

I. Geometric Reflection Groups 1
I.1. Finite Reflection Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1A Geometric Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1B Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1C The Cell Structure of V with respect to H . . . . . . . . . . . . . . . . . . 4
1D The Poset arising from W . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1E Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I.2. Infinite Reflection Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II. Coxeter Groups (Combinatorial Reflection Groups) 18
II.1. The Problems with Combinatorial Group Theory . . . . . . . . . . . . . . . . . . 18
II.2. Combinatorial Reflection Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2A The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2B Descriptions of Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . 23
2C Special Subgroups and Irreducibility . . . . . . . . . . . . . . . . . . . . . 25

II.3. Some Combinatorial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3A The Length Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3B Proposition B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3C Proposition C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3D Proof of Theorem II.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III. Coxeter Groups: A Good Class of Combinatorial Groups 37
III.1.The Reflection Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1A The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1B Tits’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1C Consequences of Tits’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . 42

III.2.The Word Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
III.3.Classification of Finite Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . 45

3A Witt’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3B The Spaces on which Coxeter Groups Act . . . . . . . . . . . . . . . . . . 47

III.4.Combinatorial Reflection Groups Re-imagined . . . . . . . . . . . . . . . . . . . . 50

IV. The Coxeter and Davis Complex 54
IV.1.The Coxeter Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1A X as a Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



1B A Combinatorial Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1C Properties of the Coxeter Complex . . . . . . . . . . . . . . . . . . . . . . 59
1D Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV.2.The Davis Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2A The Nerve of a Coxeter System . . . . . . . . . . . . . . . . . . . . . . . . 66
2B The Davis Complex and the Fundamental Chamber . . . . . . . . . . . . 67
2C Properties of the Davis Complex . . . . . . . . . . . . . . . . . . . . . . . 69

Post Script 74

A. Spaces on which Coxeter Groups Act 76
A.1. Classification of Affine Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2. Classification of Compact Hyperbolic Coxeter Groups . . . . . . . . . . . . . . . 77
A.3. Rigidity and Finite Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B. Simplicial Complexes 79
B.1. Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2. Abstract Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.3. Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.4. Barycentric Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.5. Flag Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.6. Chamber Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.7. Colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.8. Chamber Systems and Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.9. Cayley Graph and Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 85

Index 88

v



Notation

∧ The join of two simplicial com-
plexes.

△(l,m, n) The triangle group with angles l,m,
and n.

∅ The empty set.

| · | The geometric realisation of a poset.

∥ · ∥ The modulus of a vector or complex
number.

⊔ Disjoint union.

⌊·⌋ The floor function.

≡n Congruent modulo n.

#Y The cardinality of a set Y .

An The Coxeter group of type A with n
generators, isomorphic to Sn+1.

A The topological closure of A.

A A set of generators for a combinato-
rial group.

A−1 The set of inverses of the generators
for a combinatorial group.

⟨A | R⟩ A group presentation.

α⊥ For α a vector, the hyperplane or-
thogonal to α.

a The set of apartments of a building.

B(·, ·) A symmetric bilinear form.

B(z; r) The open ball in C centred at z of
radius r.

Bs(·) The barycentric subdivision of a
simplicial complex.

C A chamber.

C |
H

C ′ Two adjacent chambers separated

by a wall H.

Ĉ The complex numbers, together
with the point at infinity.

Cöb The set of comöbius transformations
of Ĉ.

Con The group of conformal transforma-
tions of Ĉ.

Cone(·) The cone of a simplicial complex.

C× The set of non-zero complex num-
bers.

χ An apartment in a building.

Dn The dihedral group of order 2n.

D∞ The infinite dihedral group.

Dw The set of minimal expressions for a
group element w.

d(C,D) The combinatorial distance between
two chambers.

∆ A simplicial complex.

(∆, a) A building.

ε The empty word which acts as iden-
tity in a combinatorial group.

Fixf The fixed point set of a map f .

Flag(·) The set of flags of a poset.

fi The linear equation defining a hy-
perplane.

Geom(·) The geometric realisation of an ab-
stract simplicial complex.

GL(V ) The general linear group on a vector
space V .

Γ A gallery.

γ A circle in C.
H A hyperplane in Rn, i.e. a co-

dimension 1 linear subspace.

H± A half-space with respect to a hy-
perplane H.

H A collection of hyperplanes.
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H′ A collection of hyperplanes which
define a chamber.

Hn n–dimensional hyperbolic space.

I The interior of the Tits cone.

Iγ Inversion with respect to a circle γ.

I The identity matrix.

int(·) The interior of a topological space.

Inv The set of circle inversions.

κ A colouring od a chamber complex.

K The fundamental chamber of the
Davis complex.

L The nerve of a Coxeter system.

lS(·) The length function on a Coxeter
system.

M The Coxeter matrix of a Coxeter
system.

Möb The group of Möbius transforma-
tions.

N The set of normals associated to a
collection of hyperplanes.

ν The Coxeter diagram of a Coxeter
system.

O(n,B) The orthogonal group on Rn with
respect to a symmetric bilinear form
B.

On The orthogonal group of Euclidean
Rn.

P(Y ) The power set of a set Y .

φ(·) Euler’s totient function.

R+ The strictly positive real numbers.

R The set of reflection in a Coxeter
system.

R A set of relations for a combinatorial
group.

Re(·) The real part of a complex number.

r A reflection in a hyperplane.

ρ The reflection representation of a
Coxeter system.

ρ∗ The dual of the reflection represen-
tation.

S A set of generators of a Coxeter
group.

Sn The n-sphere.

Sn The symmetric group on n letters.

S The set of spherical subsets of S for
a Coxeter system.

s A generator of a Coxeter group.

Σ The Davis complex of a Coxeter sys-
tem.

σn An n–simplex.

T A subset of the generating set S of
a Coxeter group.

ti A letter in an expression for an ele-
ment of a Coxeter system.

t̂i A letter deleted from an expression
for an element of a Coxeter system.

(t1, ..., td) A word in a combinatorial group.

U The Tits cone of the reflection rep-
resentation.

V A finite dimensional real vector
space.

V ∗ The dual of a vector space V .

V ⊥ The radical of a vector space V with
a bilinear form.

W A group generated by reflections.

(W,S) A Coxeter system consisting of a
Coxeter groupW generated by a set
S.

WS The set of spherical cosets of a Cox-
eter group W .

WT The subgroup of a Coxeter groupW
generated by T .

X The Coxeter complex.

Z+ The strictly positive integers.

ζn A primitive nth-root of unity.
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Chapter I

Geometric Reflection Groups

In 1935 H. S. M. Coxeter first classified all finite groups generated by reflections which act
discretely [12]. We now call such groups “Coxeter groups” after him. The generalisation to
studying infinite groups arising in the same way was largely done by J. Tits in the second half of
last century. As motivated in the preface, while these groups can be studied purely algebraically
and combinatorially, their association with Geometry is both historically and mathematically
key to their study, and is also the source of much richness in the interpretation of results, and
aesthetic beauty of the structures we can describe. For this reason we shall discuss geometric
reflection groups in this chapter, postponing the formal definition of Coxeter groups until chapter
II.

In this chapter we shall introduce formally what it means for a group to act discretely by
reflections on a vector space, and discuss the differences between the finite and infinite case. We
shall introduce the the language of chambers, adjacency, and galleries which will be vital later
on. Moreover, with some very natural and mild conditions we shall be able explicitly show that
the structure of these chambers is always simplicial.

I.1 Finite Reflection Groups

Everything we discuss will concern groups which act discretely, and so we shall normally omit
to say this explicitly as we go through. To make up for this we shall start with a few words
recalling exactly what this means, and how it will relate to our discussion. Consider the unit
circle S1 centred at 0 in C, and the orientation preserving isometries which leave it unchanged.
Now think of your favourite irrational number, maybe it is e; a rotation by eπ radians is just
such an isometry fixing the circle. What is the orbit of the point 1? Since e is irrational,
the orbit is infinite, because you will never return to the point 1, however there are points in
the orbit as arbitrarily close to 1 as you like. This is typical of a non-discrete group action.
Putting this another way, and more precisely, a group acting on a topological space is discrete
if any point in any orbit of that action can be separated from the rest of its orbit by an open
neighbourhood.

We are interested in groups generated by reflections. The rotation of the circle could have
been achieved by the composition of reflections in two lines passing through 0 and intersecting
at an angle of 1

2eπ radians. This means that if we want our group to act discretely, then the
reflections should be in mirrors which intersect at a dihedral angle which is a rational multiple of
π. In the finite case we would need this anyway, but when we discuss infinite groups generated
by reflections, we shall have infinite orbits, which we want nevertheless to be discrete, so this
condition on intersecting mirrors will mean that we shall have to achieve infinite orbits using
mirrors which are parallel.
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In this section we follow the exposition of [8, chapter I]. We have rephrased his discussion,
in general treating the geometrically “obvious” notions less rigorously, but where necessary,
results are proved rigorously. We have attempted to make these proof more self-contained, and
the argument clearer. We have included our own examples to help illustrate the theory.

1A Geometric Definitions

Definition I.1. Let V be a Euclidean vector space, which is to say Rn with the standard inner
product. A hyperplane H in V is a co-dimension 1 linear subspace of V .

Remark I.1. Everything we deal with in this section will concern hyperplanes as linear subspaces.
Why can we not include affine hyperplanes (hyperplanes which do not pass through the origin)
as well to construct more finite reflection groups? The reason for this is that then our group
generated by reflections would necessarily be infinite. If our group contained two distinct affine
hyperplanes which did not intersect, they must be parallel, and reflection in one, followed by
the other corresponds to a translation of V , which would be a group element of infinite order.
If none of the affine hyperplanes are parallel, but they did not all pass through the same origin,
consider three of them, then picture would be an n–dimensional version of figure I.1.

Figure I.1: A collection of three affine hyperplanes, intersected with a 2–dimensional plane.

The reflections just in those three lines would tile the plane with triangles, and so the
corresponding group would necessarily be infinite. We shall generalise in this way in section I.2.

A hyperplane can, up to a sign, be uniquely identified with its unit normal vector at the
origin α, so H = α⊥ (we shall remove the sign ambiguity in the proof of lemma I.1).

Definition I.2. The complement of H in V consists of two connected components, each called
a half-space. The reflection of V with respect to H, typically denoted rH , is the unique
isometry of V which preserves H point-wise, and which swaps half-spaces. Explicitly this is
given by

sH(x) = x− 2(x · α)α

where “·” denotes the standard inner product.

If this is not familiar, try imagining it in two or three dimensions, and consider for example
the image of α itself, noting that we chose α to be unit.

Definition I.3. Let W be a finite group of isometries of V generated by a finite set of hyper-
planes {H1, ...,Hk}, and let H be the smallest set of hyperplanes in V which contains this finite
set, and which is stable under the action of W . Then W is a finite reflection group.

Note the fact that our definition of a hyperplane was as a linear subspace, which means that
every hyperplane goes through the origin. How does this affect our discreteness condition? If H
contains fewer than 2 hyperplanes, this question is vacuous, so assuming it contains at least two,
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all pairs of hyperplanes intersect at the origin at some dihedral angle, and from the preliminary
discussion, we know that it must be a rational multiple of π.

We shall now give one more definition, which will help us to simplify our discussion. We
noted above that we could, up to a choice of sign, identify a hyperplane H by its unit normal
vector α. We have introduced a collection of hyperplanes H, so equivalently, we could choose
to specify a set of unit normal vectors

N := {αH ∈ V | ∥αH∥ = 1, α⊥
H = H ∈ H},

where we assume that we have already chosen exactly one α corresponding to each H. If we
set V0 := spanRN , then we can decompose V as V0 ⊕ V1 for some complement V1.

Definition I.4. We say that the groupW generated by H is essential if V1 is trivial, otherwise
we say that W is inessential.

What does this mean geometrically? Heuristically, W is essential if V is as small as it can
by, i.e. it has no invariant subspaces under the action of W . We can see that this is what
being essential means, because for each H, αH spans the eigenspace of rH with eigenvalue -1,
and every other eigenvalue is 1 (since rH fixes H). This definition will simplify our discussion,
because if we have a reflection group W which is inessential on V , without loss we can consider
its restriction to V0, on which it is essential.

Example I.1. Everything we have said so far has been in the generality of n-dimensions. We
shall now give a 2–dimensional example which will hopefully explicate all of these ideas.

Consider R2 with α1 = (1, 0) and α2 = (cos(π/3),− sin(π/3)). Then these define two
hyperplanes H1 = α⊥

1 and H2 = α⊥
2 , which in R2 are lines through (0, 0) which intersect at

an angle of π/3. We let W be the group generated by the two reflections in H1, H2 ∈ H, call
them s1 and s2 respectively. We know that s1s2 and s2s1 are rotations by ±2π/3, what about
s1s2s1? This is the conjugation of s2 by s1, so it is a reflection in a third line, H3, which is the
image s1(H2). It is not hard to see that H = {H1, H2, H3} is closed under the action of W , so
this H is minimal as we required.

H1

H2H3

α1

α2

π
3

P

Figure I.2: A 2–dimensional discrete group generated by reflections in lines intersecting at angles
of π

3 . The orbit of a point P shown to illustrate discreteness.

Figure I.2 illustrates this example. We have marked on it a typical point P , and its orbit
under W , which shows clearly that W is discrete. It is obvious from the diagram that W
is essential: s1s2 rotates the plane, so there are no non-trivial invariant subspaces under W .
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What might an inessential version of W look like? Just extrude the diagram orthogonally
out of the plane into R3. Then H1 and H2 would be defined by α1 = (1, 0, 0) and α2 =
(cos(π/3),− sin(π/3), 0), and the subspace spanned by (0, 0, 1) would be left invariant under
the new W .

1B Examples

Let us work through some low dimensional examples of finite reflection groups.

1. If V = R0 = {0}, there are no hyperplanes, so H = ∅, and W ∼= {1}.
2. If V = R, there is only one hyperplane, the point {0}, and reflection in this point just

swaps the half-spaces (−∞, 0) and (0,∞), so W ∼= {±1}.
3. If V = R2, hyperplanes are the lines through the origin. If H contains just one line, then

this line is an invariant subspace under W , so our reflection group would be inessential.
As we want W to be essential, H must contain at least two lines. The picture will look
like that in figure I.2. Choosing different angles for π

3 , we get different groups: for each
n ∈ Z choose π

n , then H will contain n lines. These are then the reflectional symmetry
lines of the regular n-gon in the plane, centred at the origin. W is then the symmetry
group of that n-gon, i.e. W ∼= Dn, the dihedral group of order 2n.

4. If V = R3, hyperplanes are just planes containing the origin. By an analogous argument to
the one above, we deduce that H must contain at least 3 planes to be essential (although
this is not a sufficient condition for 3–dimensions and up). Inspired by our observation
about the case of R2, we can consider the regular polyhedra: the platonic solids. There
are 5 of them, and each of their symmetry groups can be expressed as a finite reflection
group in the way we have described.1

Remark I.2. We can convince ourselves that we have found all of the geometric reflection groups
in R0 and R, and perhaps guess that there is not anything more interesting in R2, but what about
higher dimensions. There is no reason to assume that geometric reflection groups correspond
exactly to the regular polytopes (indeed, they do not). We have been very restrictive in our
assumptions at the start of section 1A, supposing that V is a Euclidean vector space. This is
a nice assumption to make in low dimensions, since it allows us to visualise intuitively what
is going on, but sooner or later we are going to have to relax this assumption if we want to
consider all possible geometric reflection groups.

1C The Cell Structure of V with respect to H

It should be obvious thatH divides up V into polyhedral pieces (though they are unbounded). It
will be useful to us later to have the language to discuss this structure in detail, and understand
basic properties; this is what we shall cover for most of the rest of this chapter. This material
is geometrically intuitive, so we shall state most results, taking their veracity to be more or less
obvious. For a more rigorous development of these ideas, consult [8, section I.4].

Let V be a real inner product space of dimension n, andH = {H1, . . . ,Hk} an arbitrary finite
collection of hyperplanes in V , with corresponding unit normals α1, . . . , αk. Each hyperplane
Hi is then the vanishing set of the linear equation fi : V 7→ R : x 7→ x ·αi, i.e. x ∈ Hi if and only
if fi(x) = x · αi = 0 (where “·” is the inner product). The two half-spaces with respect to Hi

are then the points x ∈ V such that either fi(x) > 0 or fi(x) < 0, write these as H+
i and H−

i

respectively.

1There is a very nice exposition on why there are only 5 platonic solids here: youtu.be/2s4TqVAbfz4. This
also intuitively generalises the search for regular polytopes in arbitrary dimensions. One could use this in exactly
the same way to construct essential geometric reflection groups in Rn.
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Definition I.5. A cell A in V is a non-empty subset of V obtained as the intersection of
half-spaces and hyperplanes corresponding to elements of H. In particular, choose a k-tuple of
subsets of V , (H∗

1 , . . . ,H
∗
k), where the ith entry H∗

i ∈ {Hi, H
+
i , H

−
i }. Then A =

⋂
iH

∗
i if this is

non-empty.

Definition I.6. The support, L, of a cell A is its linear span (i.e. the span of all points in A),
which is the minimal subspace of V containing A. We say that the dimension of a cell A is
equal to the dimension of L, its support.

An equivalent way to characterise L is as the intersection of all the Hi’s appearing in the
definition of A (as opposed to H±

i ’s); if there are no Hi’s in its definition, then we take L = V . A
as a subset of L is defined by the strict inequalities fj(x) > 0 or fj(x) < 0 for H∗

j = H+
j or H−

j

respectively, hence A is open in its support.

Definition I.7. Writing A for the topological closure of A, we say that a cell B is a facet of
A if B ⊆ A if and only if B ⊆ A. Following the practice of Bourbaki [6, p. 65], we reserve the
name face for a facet B of A which is of dimension one less: dimB = dimA− 1. A cell whose
support is V itself (or equivalently a cell of maximal dimension), is called a chamber.

Chambers partition V \H, and are in fact the connected components of this complement.

Definition I.8. We call the supports Hi of the faces of a chamber C, the walls of C.

Hi is a wall of C if and only if C and Hi intersect in a face of C. We have illustrated these
ideas in figure I.3. The subset H′ ⊆ H of walls of a given chamber C, is the unique set of
hyperplanes which define C.

C

H ′

Figure I.3: A chamber in R3 which has 5 walls, the 5 faces of C can clearly be seen. The
hyperplane H ′ is not a wall of C, even though the intersection with C has non-empty interior,
since it is not the support of a face of C.

Let X be a partially ordered set (poset, see appendix B.1) of (open) cells defined by a
collection of hyperplanes H, and ordered by the facet relation (i.e. cells A and B satisfy A ≤ B
if and only if A is a facet of B). Then any two cells A and B in X have a greatest lower bound,
or meet, int(A ∩B) (that this is indeed another cell in the poset is not hard to see). We write
this A ∧ B. Since all hyperplanes pass through the origin, the origin is a lower bound for any
two cells in X.

Remark I.3. Every cell is a facet of a chamber (this is intuitively obvious, but is proved rigorously
in [8, section I.4E, proposition 2]), and moreover, if it has co-dimension 1, it a face of exactly
2 chambers; indeed it is defined as the intersection of n − 1 half-spaces and one hyperplane.
Replacing this hyperplane by one of the two half-spaces it defines, then defines two chambers
which it is a face of. That both of these intersections are non-empty follows from the fact that
the original cell was non-empty.
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Definition I.9. Two chambers are adjacent if the share a face, or equivalently, if their defining
half-spaces are the same except for at most one H±

i . Note that this means that every chamber
is adjacent to itself. If two distinct chambers C and C ′ are adjacent, then there is a unique
i such that Hi is a wall of both which separates them; it is the support of the common face,
which can be expressed as C ∧ C ′. We would then say that C and C ′ are adjacent along Hi.

A gallery is a sequence of chambers Γ = (C0, ..., Cd) in which consecutive chambers are
adjacent. We say that Γ connects C0 and Cd, writing Γ : C0, ..., Cd. The length of Γ is d. If
two consecutive chambers in a gallery are in fact the same chamber, we say Γ stutters.

Definition I.10. The combinatorial distance between two chambers C and D, d(C,D) is
the minimum over all galleries connecting C and D of the lengths of those galleries. A gallery
which realises this length is called a minimal gallery.

This definition makes sense because there is always a gallery connection any two chambers.
Such a gallery can be constructed inductively: if C and D are disjoint chambers, there is H ∈ H

a wall of C which separates C from D, i.e. the two chambers are in different half-spaces with
respect to H. Let C1 be the chamber different from C0 := C, which is adjacent to it along
H. Proceeding likewise now with C1 we shall construct the required gallery. As any gallery
from C to D must necessarily cross all of the hyperplanes in H separating C and D, and the
gallery constructed above crosses each of those exactly once, and does not stutter, we have in
fact constructed a minimal gallery from C to D. From this follows the proposition below.

Proposition I.1.

1. d(C,D) is equal to the number of hyperplanes separating C and D,

2. if Γ is a minimal gallery connecting C and D, then it crosses each hyperplane separating
C and D exactly once, and

3. if C and C ′ are distinct adjacent chambers, and D another chamber, then d(C,D) =
d(C ′, D) ± 1, with the sign determined by whether C ′ and D are on the same side of the
wall which separates C and C ′ or not. ■

[8, chapter 1, section 4E, proposition 4]

Definition I.11. The diameter of the poset of cells X, diam(X) is the maximum over all
pairs of chambers of d(C,D).

The diameter of X is k = #H, which is realised by considering d(C,−C), where C =
⋂
H+

i ,
and −C =

⋂
H−

i is the chamber opposite to C. Then indeed C and −C are separated by every
hyperplane in H.

In 1A we introduced the idea of a reflection group being essential. We can in fact give the
same definition for the collection H without any mention of a group.

Definition I.12. We say that a non-empty collection of hyperplanes H is essential if V1 :=⋂
Hi∈HHi = {0} (if we then consider a group W generated by H, then W is essential if and

only if H is essential, but for our new definition, we are not requiring the closedness property
we did previously).

As before, we shall make the simplifying assumption that H is always essential. It is quite
easy to convince yourself that necessarily k = #H ≥ n = dimV .

1D The Poset arising from W

We shall use the lexicon which we developed above to describe the action of a finite reflection
group W on an inner product space V ; a slightly more general set-up than we had in the first
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section. Recall that H is a finite collection of hyperplanes such that W is generated by the
reflections sH with H ∈ H, and which is invariant under the action of W . That this is W–
invariant is a consequence of the identity wsHw

−1 = swH for all w ∈W . As above, let X denote
the poset of cells coming from H. From the definition of X one can see that reflections in any of
the walls will permute the cells, and since reflection is a continuous map, the face relation will
be preserved. Thus W acts on X by poset automorphisms (see definition B.3). Now follows a
very important theorem about the action of W on X.

Theorem I.1.

1. W acts simply-transitively2 on the chambers of X, hence the number of chambers is equal
to #W .

2. W is generated by the reflections in the walls of any fixed chamber C in X.

3. The collection of hyperplanes H associated with W necessarily consists of all hyperplanes
H such that reflection in H, sH , is an element of W .

Remark I.4. A priori it seemed that X depended on the choice of H, however the last claim of
this theorem shows that X is dependent only W and the associated vector space V .

Proof. The proof proceeds in six steps.
Step 1:

Let C be a chamber with wall H, and let t be reflection with respect to H. Then
tC and C are adjacent along H, and moreover they are distinct.

Indeed, let A be the face of C supported by H, then the corresponding face of tC is tA ⊆ sH,
but by definition of t, it fixes H, so tH = H, and tA = A, thus C and tC share a face supported
by H. The last claim is obvious.

Step 2: Fix a chamber C and let S be the set of reflections tH such that H is a wall of C.

For all w ∈W and tH ∈ S, wtHC and wC are distinct and adjacent along wH.

Indeed, this follows from step 1 by applying the action of w. We can illustrate this using the
following diagram:

C |
H

tC
w7−→ wC |

wH

wtC

Step 3:

Given t1, . . . , td ∈ S, the gallery

Γ : C, t1C, t1t2C, ..., t1t2 · · · tdC

is non-stuttering, and any non-stuttering gallery from C has this form.

Indeed, the first claim follows from step 2. Conversely let Γ : C0, ..., Cd be a non-stuttering
gallery, with C0 = C. We proceed by induction on d. There is nothing to prove if d = 0, so
let d ≥ 1 and assume that the gallery Γ′ : C0, ..., Cd−1 has the required form. Cd−1 and Cd are
distinct and adjacent along some wall H of Cd−1 = t1 · · · td−1C. Let H ′ be the corresponding
wall of C, that is choose H ′ such that t1 · · · td−1H

′ = H, and let td be reflection with respect to
H ′. Then by step 2

C |
H′
tdC

t1···td−17−→ Cd−1 |
H

t1 · · · td−1tdC

2A group G acts simply-transitively on a set Y if for all y, y′ ∈ Y there exists a unique g ∈ G which takes y
to y′.
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and since Cd−1 |
H

Cd by definition of H, and we know that Cd−1 is distinct from t1 · · · td−1tdC

and Cd. In view of remark I.3 we conclude that t1 · · · td−1tdC = Cd as required.
Step 4: Let W ′ be the subgroup of W generated by S. By step 3 we know that W ′ acts

transitively on the chambers of X, since any chamber can be connected to a chosen starting
chamber C by a gallery; and so has the form t1 · · · tdC. Hence W ⊃W ′ acts transitively on the
chambers.

W =W ′; that is claim 2 of the theorem holds.

Indeed, it suffices to show that W ′ contains all the reflections tH in W where H ∈ H. Every
hyperplane H ∈ H is the wall of some chamber, call it D. We know that D = wC for some
w ∈ W ′, so H = wH ′ where H ′ is a wall of C. Then we can write tH = wtH′w−1 ∈ W ′ as
required.

Step 5: We have shown that W acts transitively, to see that it acts simply-transitively, and
so prove 1, we must show that the stabiliser of C in W is trivial.

Let w ∈W be a non-trivial element, then wC ̸= C.

Indeed, let w = t1 · · · td be an expression for w with minimal “length” d, and consider the gallery
Γ : C,w1C, ..., wdC, where wi = t1 · · · ti. We shall show that if s1 is reflection with respect to
the wall H1 of C, then H1 separates C and wC. In general let Hi be the wall of C fixed by ti,
and write Ci = wiC. By step 2 we have

C |
Hi

tiC
wi−17−→ wi−1C |

wi−1H1

Ci

Note that the wall separating two consecutive chambers in Γ (which by step 3 we know is
non-stuttering), is the unique hyperplane in H separating these chambers, by the argument in
remark I.3. It follows that H1 must separate C from wC unless Γ crossed H1 more than once3.
Assume therefore that C and wC are on the same side of H1, so wi−1Hi = H1 for some i > 1.
Considering the associated reflections, we get

wi−1tiw
−1
i−1 = t1 =⇒ wi−1ti = t1wi−1

=⇒ t1 · · · ti−1ti = t1t1t2 · · · ti−1 = t2 · · · ti−1

and hence w = t1t2 · · · td = t̂1t2 · · · t̂i · · · td, where t̂i means that ti has been deleted from the
expression for w, but this contradicts the minimality assumption, whence the claim.

Step 6: The last step is to prove 3.

If H is a hyperplane fixed by a reflection t ∈W , the H ∈ H.

Indeed, assume that H /∈ H, so that H ̸⊂
⋃

H′∈HH
′ because a linear subspace cannot be a

finite union of proper subspaces H ∩H ′. Hence H meets some chamber, call it D. Since t fixes
H, and tD meets D, we must have H = tH, which contradicts step 5. [8, chapter I, section
5A] ■

Remark I.5. The number of chambers in X is equal to the number of elements of W , and W
acts transitively on these chambers. A simple geometric argument shows that every chamber
must have the same number of walls. If we fix a chamber C, and label this with the identity
element inW , ε, then we can label every other chamber of X by the unique element ofW which
maps this fundamental chamber to that chamber. With S as in step 2 of the proof, we know
that S generates W , and then galleries from C to the chamber wC, labelled w, correspond

3In particular, an even number of times; however we do not need this.
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to expressions for w in the generators S, and so minimal galleries correspond to “minimal
expressions”, as mentioned in step 5 [8, remark 2, p. 18].

In the proof of step 5, there was nothing special about H1, the same argument proves in
fact that if Γ is a gallery from C to wC, then every wall crossed by Γ an odd number of times
separates C from wC. This way of talking about group elements, and this method of reasoning
will be core in the latter part of chapter III.

Example I.2. Consider the dihedral group D4 acting on Euclidean R2 in the usual way, anal-
ogous to example I.1. The cell structure can be seen in figure I.4. There are 8 chambers just as
there are 8 group elements, as (1 ) in the theorem states. We choose one of these chambers to
be the fundamental chamber C, and label its walls H and H ′. If s and s′ respectively are the
reflections in these walls, then S = {s, s′} generates D4. As described in the remark above we
can label each of the chambers by the group element which maps C to it.

H

H ′

C = εCsC

s′ss′Css′ss′C
= s′ss′sC

s′Css′C

s′sCss′sC

Figure I.4: The labelled chambers in the poset X corresponding to the group D4.

1E Chambers

Definition I.13. Let G be a group acting on a set Y . A connected subset F of Y is called a
fundamental domain for the action of G if F contains a representative point from every orbit
space in Y , and that representative is unique except possibly on the boundary of F .

Example I.3. Consider the real numbers acting on the unit disc in C via z 7→ eixz for all
x ∈ R. The reals act as rotations, and the orbit spaces are the concentric circles around 0. An
example of a fundamental domain for this action is the line segment between 0 and 1 in the
complex plane, as this intersects each concentric circle exactly once.

Fundamental domains allow us to visualise the orbit space. Since they are connected, it
is easy to think of the fundamental domain “tiling” the space under the action of the group.
From this description, and statement (1 ) of the theorem, it is easy to show that a fundamental
domain for the action of W on X is C, for C any chamber [8, chapter I, section 5F, theorem],
in particular we might as well take C to be the fundamental chamber. We need to include the
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boundary of C so that we capture every orbit space, see definition I.7. In the example above
one can clearly see how C is a fundamental domain for the action of D4, and how this action
“tiles” R2 with copies of C. From the preceding it should be evident that chambers can tell
us a lot about the behaviour and structure of a finite geometric reflection group4. Can we say
something about the chambers associated to a finite reflection group in general? The remainder
of this section will be devoted to answering this question.

From the definition of cells, it is clear that they partition V into disjoint convex connected
sets which are closed under scalar multiplication by positive real numbers. Geometrically this
means that they are a cone over some (n − 1)–dimensional polytope. So in figure I.3, C is
the cone over a pentagon, each of its faces are a cone over an open line segment, and the
one dimensional facets (what we might call edges), are cones over a point. We know that the
dimension of a chamber C is n = dimV .

Definition I.14. We say that C is a simplicial cone if it is a cone over an (n− 1)–simplex.
(Recall: an (n− 1)–simplex σn in Rn has n vertices {e1, . . . , en} which are in general position,
then σn = {

∑
i λiei | λi > 0,

∑
i λi = 1}.)

If C is simplicial over an (n − 1)–simplex with vertices {e1, . . . , en}, then we can write
C = {

∑
i λiei | λi > 0} by the definition of a cone. Our first lemma characterises when a cham-

ber C is a simplicial cone in terms of the number of its walls.

Lemma I.1. Let C be a chamber in V with respect to an essential collection of hyperplanes H,
then C is a simplicial cone if and only if C has exactly n walls.

Proof. Suppose C is a simplicial cone, then its faces are{
n∑

i=1

λiei

∣∣∣∣∣λi > 0 if i ̸= j, λj = 0

}

for j = 1, . . . , n; so C indeed has exactly n walls.
Now suppose C has n walls, i.e. H′ = {H1, . . . ,Hn}. Since H = {H1, . . . ,Hk} is essential,

V1 =
⋂

Hi∈HHi = {0}. V1 is a facet of every cell, so in particular it is a facet of C; hence
V1 =

⋂
Hi∈H′ Hi = {0}, and H′ is also essential. Recalling that we called the defining equations

of the Hi’s fi, this observation implies that the system of simultaneous equations f1(x) = · · · =
fn(x) = 0 has only a trivial solution, hence {fi}ni=1 is a basis of the dual space V ∗ of V . Let
{ei}ni=1 be the basis of V dual to {fi}ni=1, i.e. fi(x) =: ei · x. Suppose we choose the fi’s so that
the points of C are given as the simultaneous solutions of f1(x), . . . , fn(x) > 0 (which choice
we have the freedom to make, it is the same choice as when we labelled the half-planes with
respect to Hi as H

+
i or H−

i ). Now we have x ∈ C if and only if fi(x) > 0 for 1 ≤ i ≤ n if and
only if x =

∑
i λiei for λi > 0, 1 ≤ i ≤ n, that is C is a simplicial cone [8, chapter I, section

4C, proposition]. ■

Notice how in this proof we simplified our notation by assuming that C was given by the
positive inequalities fi(x) > 0. From now on, if we have a particular chamber C under discussion,
we shall assume that we have chosen the fi’s in this way. We shall call such a chamber the
fundamental chamber. We also chose to write fi(x) = ei · x. The vector ei (which we were
formerly calling αi), is a normal to Hi, so our method of fixing the fi’s is just the same as
choosing ei such that it points “towards” C. Finally note that taking a non-zero multiple of fi
does not change the definition of Hi, so we might as well choose the ei’s to be unit vectors.

4In fact they tell us everything, because from the chambers X can be reconstructed, and from X the whole
of W , since W is generated by the reflections in the walls in X if any one of the chambers, see [8, chapter I,
appendix D] for details.
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We noted in section 1B that our opening assumptions were quite restrictive on the sorts of
reflection groups we might be able to produce. We shall begin to tackle these shortcomings now.
Instead of assuming V is Rn with the standard Euclidean inner product, let us now assume that
it is equipped with an inner product denoted B(·, ·), and that fi(x) = B(ei, x). We are ready
to state our second lemma, which gives us a sufficient condition for C to be a simplicial cone.

Lemma I.2. Let H be an essential collection of hyperplanes in V , and let C be a chamber with
respect to H, with walls H′ = {H1, . . . ,Hr}. If B(ei, ej) ≤ 0 for all 1 ≤ i ̸= j ≤ r, then C is a
simplicial cone.

Proof. Since H is essential, we know that r ≥ n, and {ei}ri=1 spans V ; by the previous lemma,
we know that for C to be a simplicial cone, we need r = n, so it is sufficient to show that {ei}ri=1

is linearly independent.
Suppose to the contrary that there exists a non-trivial linear combination

∑r
i=1 λiei = 0, and

choose such a linear combination which has a minimal number if λi’s non-zero
5. Then we claim

that all non-zero λi’s must have the same sign. Suppose some are negative and some positive, we
can split up the sum as

∑
i∈I µiei =

∑
j∈J µjej , where I and J are disjoint non-empty subsets

of {1, . . . , r}, and all µ’s are strictly positive. Then

0 ≤ B

(∑
i∈I

µiei,
∑
i∈I

µiei

)
= B

∑
i∈I

µiei,
∑
j∈J

µjej

 =
∑
i∈I

∑
j∈J

µiµjB(ei, ej) ≤ 0

where the first inequality comes from positive-definiteness B, and the second from the hypothesis
of the lemma. We conclude that

∑
i∈I µiei =

∑
j∈J µjej = 0, and since we chose our original

linear combination to be minimal, all µ’s and hence all λi’s are zero, a contradiction. Hence a
minimal non-trivial linear combination

∑r
i=1 λiei = 0 will have all λi’s with the same sign. We

can take them all to be positive.
Finally we shall use that the inequalities B(ei, ·) > 0 for 1 ≤ i ≤ r define C which is non-

empty, i.e. ∅ ≠ C := {x ∈ V | B(ei, x) > 0 ∀i}, so there exists x ∈ C, which we can take the
inner product with the linear combination to get

0 <
r∑

i=1

λiB(ei, x) = B

(
r∑

i=1

λiei, x

)
= B(0, x) = 0

a contradiction, hence our assumption that there exists a non-trivial linear combination of ei’s
which vanishes was incorrect, and so they are linearly independent, as required. [8, chapter I,
section 4D, proposition] ■

The condition that B(ei, ej) ≤ 0 says that the angle between ei and ej must not be acute
with respect to B. Figure I.3 shows a 3–dimensional chamber which has 5 walls and so is not
a simplicial cone. It is clear that the angles between walls are obtuse (with respect to the
standard inner product), and so the angles between the corresponding ei’s are acute. Neither
of the previous two lemmata require H to arise from a finite reflection group, they hold for any
finite collection of hyperplanes.

Theorem I.2. Let W be a finite reflection group acting essentially on a vector space V , and let
X be the associated poset of cells in V . Then every chamber in X is an open simplicial cone.

5This assumption is required to get the first contradiction below. K. Brown fails to do this in his proof [8] so
it is not quite rigorous. Our thanks to P. Tumarkin for this observation.
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Proof. Let C be a chamber in X with walls {H1, ...,Hr}, each of which has corresponding unit
normal ei, chosen to point “towards” C, that is C =

⋂
iH

+
i . Let si be reflection in Hi, so by

2 of theorem I.1, S = {s1, ..., sr} generates W . Write mij for the order of sisj in W . We shall
prove that

B(ei, ej) = − cos

(
π

mij

)
(I.1)

So that for i ̸= j, B(ei, ej) ≤ 0, and hence by the previous lemma, C (which by definition is
open), is a simplicial cone.

The equation clearly holds if i = j since each si is a reflection, and hence has order 2, so
fix i and j distinct. Let W ′ = ⟨si, sj⟩ be the subgroup of W generated by si and sj which
acts essentially on the 2–dimensional subspace of V , V ′ = Rei ⊕ Rej . Since the order of sisj is
unchanged when we consider the restriction to V ′, the equation above will hold if and only if it
holds for B restricted to V ′ as well.

Let H′ = {w′H ∩ V ′ | w′ ∈W ′, H = Hi or Hj} be the minimal collection of lines in H ∩ V ′

containing H ′
i = Hi ∩ V ′ and H ′

j = Hj ∩ V ′ which is invariant under W ′. H′ is the canonical
set of hyperplanes associated to the action of W ′ on V ′. Writing C ′ = C ∩ V ′, the walls of C ′

are the lines H ′
i and H

′
j , which have unit normals ei and ej which still point “towards” C ′.

Let m = #H′ which is at least 2. The H′ divides the plane V ′ into 2m chambers, each of
which is a sector bounded by two rays. Since W ′ acts transitively on these chambers ((1 ) of
theorem I.1), and reflections preserve angles, all of the sectors are congruent, in particular each
has angle 2π

2m = π
m . W ′ is generated by the reflections in the walls of C ′, H ′

i and H ′
j , which

intersect at that angle; hence W ′ is the dihedral group of order 2m, see example 3 in section
1B, and the order of sisj is m. We then have that the angle between ei and ej is π − π

m , and
so the angle formula for inner products gives

B(ei, ej) = ∥ei∥∥ej∥ cos
(
π − π

m

)
= − cos

( π
m

)
where m = mij as required. Note that the “−” sign appears because of our convention about
the direction we chose for each ei. [8, chapter I, section 5C, theorem] ■

We shall return to the poset X in chapter IV, where we shall study it more formally in terms
of its algebraic description instead the geometric one we have defined here. We prove in fact
that it is a simplicial complex (we have so far been careful only to call it a poset), which should
not be too much of a surprise in light of theorem I.2: that the chambers of X are simplicial
cones. We shall however make one observation which we shall come back to at the end of chapter
III. We noted in remark I.1 that a necessary condition for a geometric reflection group to be
finite was that all the hyperplanes in H pass through the same point, taken to be the origin.
This, together with the result that all of the chambers of X are simplicial cones, means that
if we intersect X with the unit (n − 1)–sphere in V (were V has dimension n), we shall get a
triangulation of the sphere: all of the 1–dimensional facets become 0–simplicies, all of the faces
become (n− 2)–simplicies, and all of the chambers become (n− 1)–simplicies. If we do this in
the case of the example of the above, intersecting the cells with the unit circle centred at the
origin, we get a triangulation of S1 by the regular octagon. We give a 3–dimensional example
below.

Example I.4. In section 1B we suggested that one way to construct finite reflection groups
would be to consider the symmetry groups of regular polytopes. We shall now do this explicitly
for the dodecahedron.

From the discussion above we know that we might as well project onto the sphere. If we
mark on all of the reflection planes of the dodecahedron as great circles we get figure I.5b. This
is a periodic tiling of the sphere by triangles which have angles π

2 ,
π
3 and π

5 . Even without

12



theorem I.1 we can argue that the symmetry group of the dodecahedron acts transitively on
these triangles (which are the simplicies over which the chambers are simplicial cones), as seen
in the previous theorem. Indeed rotations of the dodecahedron will take any pentagonal face to
any other, and the symmetries of the pentagon mean that within a pentagon, any triangle can
be taken to any other.

Choosing a fundamental chamber, the symmetry group is generated by the reflections in
the walls of this chamber, see figure I.5c. Reflection in one wall followed by another gives a
rotation, the order of which is given by the denominator of the dihedral angle between them,
and so if we call these reflections a, b, and c, the symmetry group is given by

⟨ a, b, c | a2 = b2 = c2 = (ab)5 = (ac)3 = (bc)2 = ε ⟩

(a) (b) (c)

Figure I.5: Calculating the symmetry group of the dodecahedron (a). The planes of symmetry
intersected with the unit circle are shown in (b). After making the choice of a fundamental
chamber, the symmetry group is generated by the reflections in its walls (c).

I.2 Infinite Reflection Groups

In the previous section, we made a relatively detailed study of the way in which finite reflection
groups act on real vector spaces, and in particular we saw the importance of chambers in
understanding such actions. We shall now turn to consider infinite reflection groups. We shall
see that almost all of the definitions and results either carry straight over to the infinite case,
or have a direct analogue.

In remark I.1 we justified why we considered only hyperplanes which were linear subspaces of
the vector space, because otherwise we would necessarily get an infinite group. The converse to
this is that we shall necessarily have affine hyperplanes if we want to have an infinite geometric
reflection group which acts discretely , since the collection of hyperplanes associated to such a
group is infinite, and if they all passed through the same point in a finite dimensional vector
space, then the group action would not be discrete. Formally we would say that for the group
action to be discrete, the collection of affine hyperplanes must be locally finite [5, chapter 1,
section 1, definition 8], which means that only finitely many affine hyperplanes intersect at any
given point.

Definition I.15. Let V be a finite dimensional real vector space, which we shall assume
throughout the following has an inner product B. An affine hyperplane in V is a trans-
late of a hyperplane of V . The affine space of V , denoted Aff(V ) is V along with all affine
hyperplanes in V (this takes the vector space V and then “forgets” the origin).
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Every affine hyperplane H in V divides V into two open connected components, called half-
spaces; we call the unique isometry of V which fixes H point-wise and swaps half-spaces the
reflection of V in H.

Definition I.16. Let W be an infinite group of isometries of V generated by a finite set of
affine hyperplanes {H1, ...,Hk}, and let H be the smallest set of hyperplanes in Aff(V ) which
contains this finite set, and which is stable under the action of W . If H is locally finite, then
W is an infinite reflection group.

In the previous section, we gave two definitions of “essential”, one for a group, and one for
a collection of hyperplanes. Since we are now working in an affine space, the second definition
no longer works, however we can trivially modify the first to work in this setting.

Definition I.17. Suppose the group W is generated by reflections in the affine hyperplanes
{H1, ...,Hk}, and that Hi has a unit normal ei. W is essential if {e1, ..., ek} span V ; otherwise
we say that W is inessential.

We illustrate the ideas with the following example.

Example I.5. What is the simplest example of an infinite reflection group? There are no affine
hyperplanes in R0, so let V = R. The affine hyperplanes in V are its points. From example 2
in section 1B we know that one affine hyperplane generates a finite reflection group, so let W
be generated by reflection in two points: 0 and 1. Reflection in one point followed by reflection
in the other preserves the ordering on R, and takes 0 7→ 2. Since it is an isometry, this must be
a translation by 2 in the positive direction. It follows that the minimal set H must be the set
of integers. W then acts by translations of R by integer multiples of 2, and by reflections in the
integers.

If one added a point at infinity, the extended real line is homeomorphic to a circle, and
translations behave “like” rotations of the circle (save that ∞ is fixed). since a circle is like
a regular ∞-gon, this group is often called the infinite dihedral group, and denoted D∞. The
connection between Dn and D∞ will be clearer after example II.4.

As with example I.1, we can imagine an inessential version of this example. Embed R into
R2, then the affine hyperplanes are the lines orthogonal to R, intersecting at each integer. The
unit normals of these hyperplanes all lie in R, and hence do not span R2 meaning that The
group is now no longer essential.

All of our definitions regarding the cell structure of V with respect to H: walls, chambers,
the poset X et cetera, carry through to the affine case by replacing “hyperplane” with “affine
hyperplane”, and similar small alterations. Even the definition of “diameter” if we say that it is
infinite if no maximum combinatorial distance exists (although trivially X will always infinite
diameter if it corresponds to an infinite reflection group).

Even though there will be an infinite number of chambers in X if W is an infinite reflection
group, any two chambers will be connected by a finite gallery, since our discreteness condition
means that any two chambers must be separated by only a finite number of walls. Then the
same arguments as before mean that proposition I.1 still holds in this more general setting.
Examining the proof of theorem I.1, we see that we need only change “linear subspace” to
“affine subspace” in step 6 to get the same result in the infinite case, provided that we interpret
#W in the theorem statement as the cardinality of W , which is always countably infinite, since
W is finitely generated by assumption. This also means that the comments in remark I.5 also
hold in the infinite case, so we can label the chambers of X by a unique element of W each
after the choice of a fundamental chamber.

In section 1E we proved that the chambers of a finite reflection group are simplicial cones.
What is the analogous result for infinite reflection groups? First we need a definition which
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will be very useful in our later discussion, and which will be explored more fully in section 2C
of chapter II; for now we shall just state it without any justification for why it is a sensible
definition to make.

Definition I.18. LetW be a geometric reflection group (finite or infinite), generated by (affine)
hyperplanes {H1, ...,Hk}. If there is a partition of {1, ..., k} into non-empty sets I and J such
that for any i ∈ I and j ∈ J , Hi and Hj intersect orthogonally, then W is reducible; if no such
partition exists W is irreducible.

Theorem I.3. Let W be an essential and irreducible infinite reflection group acting on a vector
space V , and let X be the associated poset of cells in V . Then every chamber in X is an open
simplex.

For the proof we shall first need a lemma from linear algebra which we state without proof.

Lemma I.3. Suppose {e1, ..., en} span V and are linearly dependent; if

1. B(ei, ej) ≤ 0 for all i ̸= j, and

2. there is no partition of {1, ..., n} into non-empty sets I and J such that for any i ∈ I and
j ∈ J B(ei, ej) = 0,

then n = dimV +1 and there exist ci > 0 such that
∑

i ciei = 0, and for any linear combination∑
i c

′
iei = 0, there exists ξ such that c′i = ξci. [6, chapter V, section 3, lemma 5]

Corollary I.1. Let W be an essential and irreducible infinite reflection group acting on a
vector space V and generated by affine hyperplanes {H1, ...,Hk}. Let X be the associated poset
of cells in V . Then each chamber C has dimV + 1 walls, and if ei is the unit normal vector
to Hi pointing towards C for all i, there exist ci > 0 such that

∑
i ciei = 0, and for any linear

combination
∑

i c
′
iei = 0, there exists ξ such that c′i = ξci.

Proof. Fix a chamber C. With notation as in definition I.17, since W is essential, {e1, ..., ek}
spans V . Suppose ei and ej correspond to distinct walls of C. If those walls are parallel,
ei = −ej , and so B(ei, ej) = −1. If the corresponding walls intersect, then the proof of theorem
I.2 shows that B(ei, ej) ≤ 0. Hence the first condition of lemma I.3 is satisfied. Because W is
irreducible, the second condition is also satisfied.

If {e1, ..., ek} were linearly independent then they would form a basis of V , so after an
affine transformation of V , {H1, ...,Hk} could be identified with a set of mutually orthogonal
hyperplanes through the origin (“coordinate hyperplanes”) so they would all share a common
point, the origin. Hence the original affine hyperplanes {H1, ...,Hk} must share a common point
which is invariant under W . But then by remark I.1 and the discreteness assumption, W would
be finite, a contradiction. Hence {e1, ..., ek} are linearly dependent so we can apply lemma I.3.
(Adapted from [6, chapter V, section 3, proposition 8]) ■

Proof of theorem I.3. Fix a chamber C, and let {H0, ...,Hd} be the walls of C. Write ei for the
unit normal vector to Hi pointing towards C for each i. By corollary I.1, {e1, ..., ed} (excluding
e0) form a basis of V , and so by the argument in the second paragraph of the proof of that
result, there is a point a ∈

⋂d
i=1Hi. Let us re-define V so that it has origin a, and {H1, ...,Hd}

are linear hyperplanes, and H0 is an affine hyperplane. There is a basis {e′1, ..., e′d} of V which
satisfies B(em, e

′
n) = δmn (Kronecker delta). Also by the corollary there are numbers ci > 0

such that
e0 = −(c1e1 + · · ·+ cded).

Since H0 is orthogonal to e0 there is a real number c such that H0 can be defined as the set of
points x satisfying B(x, e0) = −c. Every point y of V can be written as y = ξ1e

′
1 + · · · + ξde

′
d
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for some ξi ∈ R. Since C is the intersection of the “positive” half-spaces with respect to its
walls, y ∈ C if and only if B(y, ei) > 0 for 1 ≤ i ≤ d and B(y, e0) > −c if and only if ξi > 0 for
1 ≤ i ≤ d and c1ξ1 + · · · + cdξd < c. Since C is non-empty and the ci’s are positive, we must
have c > 0.

Define am = c
cm
e′m for 1 ≤ m ≤ d. Then C consists of the points

∑d
m=1 λmam with λm > 0

for 1 ≤ m ≤ d and λ1 + · · · + λd < 1. Hence C is the open simplex with vertices 0, a1, ..., am.
(Adapted from [6, chapter V, section 3, proposition 8]) ■

We motivated the examples of finite reflection groups given in section 1B by considering
the symmetry groups of regular polytopes in Rn. The equivalent for infinite reflection groups
would be periodic tilings of Rn by regular polytopes. By the theorem above, if we make the
assumption that our group is irreducible and essential, then the tiles must simplices. In the
previous example we discussed R, so now we consider the 2–dimensional case in detail.

Example I.6 (Triangle Groups). Consider a triangle, and the infinite reflection group generated
by reflections in its sides. The interior angles must be integer sub-multiples of π in order that
the group be discrete. Let them be π

l ,
π
m , and π

n , such that l ≤ m ≤ n. Necessarily each of
these is at least 2. In Euclidean space we know that the angles sum up to π, that is

β :=
1

l
+

1

m
+

1

n
= 1

So the only possible triangles are (l,m, n) = (2, 3, 6), (2, 4, 4), or (3, 3, 3). These correspond to
the tiling of the plane by regular hexagons, squares, and equilateral triangles respectively, which
can be seen by taking the barycentric subdivision of the hexagon and square (see appendix B.4,
and figure B.4 on page 85). The tiling in the case (2, 4, 4) is illustrated in figure I.6.

Figure I.6: Periodic tiling of the plane by (2,4,4) triangles, which corresponds to the tiling by
squares.

With knowledge of 2–dimensional spherical and hyperbolic geometry we know that we can
generalise this. Choose any triple of integers at least 2 (l,m, n) ordered as above, and compute
the “angle sum” β. If β > 1, the corresponding triangle exists on a sphere, and if β < 1 it exists
on the hyperbolic plane6. The geometric reflection groups which arise in this way are called
triangle groups, and are often written △(l,m, n).

As in the Euclidean case, there will only be finitely many triples in the spherical case.
These again will make up the barycentric subdivision of some regular polygon on the sphere
with which it is tiled. Periodic tilings of the sphere by regular polygons correspond exactly to
the regular polyhedra (the platonic solids). We have already seen △(2, 3, 5), which corresponds
to the dodecahedron, in example I.4. From the discussion about the relation between finite
reflection groups and the sphere at the end of the last section, we know that the spherical case
actually corresponds to finite reflection groups in 3–dimensions. (Based on [18, chapter 11])

6We see such a triangle group in example IV.2.
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Notes

1. The material in the first section closely follows the exposition in chapter I of [8], although
we have reordered some of the material where it made sense so that the ideas which
were directly transferable to the infinite case were all presented first and together, before
covering the results particular to the finite case.

2. The material in the second section was sourced more widely, but the initial transfer of
material from the first section was arrived at by analysing the assumptions made in [8]
about finiteness.

3. Theorems I.2 and I.3 are both given in [6] in statements which say slightly more, in
particular about the fixed point sets under the action of reflection groups, however for
simplicity we chose to state only the parts concerning the shape of chambers.
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Chapter II

Coxeter Groups (Combinatorial
Reflection Groups)

This chapter is logically independent from the first chapter with the exception of the very
last page (which could be made independent), and will seem like an abrupt change of gear.
The aim will be to unify the two sets of ideas in chapter III. We first take a broad and more
philosophical look at combinatorial group theory in general. Following this however we shall
formally introduce Coxeter groups as combinatorial groups, as well as the language we use to
talk about them. The main body of the chapter is devoted to proving some combinatorial
properties of Coxeter groups surrounding a notion of length which we define on the group. We
shall end the chapter by proving the equivalence of Coxeter groups and combinatorial reflection
groups, thus justifying the title above.

II.1 The Problems with Combinatorial Group Theory

Some groups arise very naturally in many contexts, and the contexts in which they arise give us
new tools to study and understand those groups. Combinatorial group theory abstracts away
from this in the hope of studying groups more generally, and finding groups which have not
been observed in the wild. Combinatorial groups are defined via group presentations, there are
different ways to think about group presentations: as quotients of free groups, as a monoid with
a certain equivalence relation, or, as is perhaps the easiest, in terms of generators and relations.

Definition II.1. Let A be an abstract set whose elements we shall call generators. The
elements of A, along with the elements of A−1 := {a−1 | a ∈ A} (this is another abstract set,
in bijective correspondence with A, think of the elements of A as names, then the elements
of A−1 are their formal inverses), will be called letters, and the set of all letters we shall call
an alphabet. A finite string of letters will be called a word. Let R be a set of expressions of
the form “word in the alphabet”=“word in the alphabet”, each expression in R will be called
a relation. The a group presentation is of the form ⟨A | R⟩. A is called the set of
generators, and R the set of relations.

A group presentation is a group, with operation the concatenation of words, followed by
deletion of any occurrences of aa−1 or a−1a, for a ∈ A:

abc−1 ∗ ccbab = abc−1ccbab = abcbab

the identity is the empty word, denoted ε, and associativity and the existence of inverses are
easy to prove. Two words represent the same group element if one can be transformed into the
other by a series of substitutions using the relations, or equalities which can be derived from
the relations.
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Notation II.1. In a combinatorial group there is a subtle but important difference between a
group element and a word representing a group element. Often one can get away with not
worrying about the distinction, however we shall need to prove some results which talk about
this explicitly, and so it will be necessary to distinguish them in our notation. We shall write a
word as a sequence a = (a1, ..., ak), for ai ∈ A ∪A−1, and then the group element it represents
would be written a1 · · · ak. Note that in a given group, one could have that a1 · · · ak = a′1 · · · a′k′ ,
but never that (a1, ..., ak) = (a′1, ..., a

′
k′) unless k = k′ and ai = a′i for all i. This follows the

conventions in [6].

Definition II.2. ⟨A | R⟩ is a presentation of a group G if they are isomorphic as groups. A
group presentation is finite if A and R are finite sets; G is called finitely presented if it has
a finite group presentation (being finitely presented does not mean that G itself is finite, for
example, the group of integers has presentation ⟨1 | ⟩, which is almost as simple a presentation
as one could write down, though there are infinitely many integers). We shall only concern
ourselves with finitely presented groups here.

At first sight group presentations seem to be a marvellous way to describe groups. They get
right to the heart of the group structure, listing only the generators and a few choice relations,
instead of having to list every element, and specify how the group operation works for each pair
of elements. It is then very easy to prove properties of every element in the group, because one
merely needs to show the generators satisfy the properties, and that they are consistent with
the relations.

Example II.1. To illustrate the efficiency of presentations in writing down groups, consider
the monster group M , of order ∼ 8× 1053, which nevertheless has presentation

⟨a, b, u | a2 = b3 = (ab)29 = u50 = (au25)5 = (ab(b2a)5b(ab)5b)34 = ε, u = (ab)4(abb)2⟩

and so only requires 2 generators, since the last relation gives u in terms of a and b [11, pp.
228–234].

What then is the problem with combinatorial group theory? Well, these advantages really
come into their own when a group presentation is being used descriptively, that is if one is writing
down a known group. What if, however, we chose a random set of letters for our generators,
and a random set of relations. What could we say about that group? Could we find a naturally
occurring group to which it is isomorphic? Given another random group presentation, would
one know whether they define the same group or not, and is there a fast way to decide this
in general? Could we even check whether the group we originally wrote down was anything
other than the trivial group in disguise? Moreover, we can see from the definition that we can
transform one word into another in a given group using the relations, so two different words can
correspond to the same group element; is there a way to decide whether, given two arbitrary
words, this is the case or not?

The answer to all of these questions is no in general, and this is the Achilles’ heel of combina-
torial group theory, in principle one could spend years studying a group presentation, discover
hundreds of properties of it, and never know that in fact one was studying the trivial group all
along. If, on the other hand, one can show that the combinatorial group is the same as some
naturally occurring group, say a group of symmetries of some geometric object, or as a group
of matrices, then this problem is solved (the trivial case at least).

Such questions as these were first formally discussed by M. Dehn in his 1912 paper “Über
unendliche diskontinuierliche Gruppen” [14], wherein he writes:

1. The identity problem: An element of the group is given as a product of
generators. One is required to give a method whereby it may be decided in a
finite number of steps whether this element is the identity or not.
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2. The transformation problem: Any two elements S and T of the group are
given. A method is sought for deciding the question whether S and T can be
transformed into each other, i.e. whether there is an element U of the group
satisfying the relation

S = UTU−1.

3. The isomorphism problem: Given two groups, one is to decide whether
they are isomorphic or not (and further, whether a given correspondence be-
tween the generators of one group and elements of the other group is an iso-
morphism or not).

The first of these problems has subsequently become known as the Word Problem, and
is stated more generally as deciding whether two words represent the same group element, not
just whether they represent the identity. The second problem is now known as the Conjugacy
Problem, and is equivalent to determining the conjugacy classes of a group. Since the invention
of the modern computer, and K. Godël’s work on incompleteness [15], these questions haves
also been extended to ask, if an algorithm does exist [for a particular class of groups] to decide
one of these problems, how fast can that algorithm be made (this is the so-called P vs. NP
problem).

It is not without reason that Dehn wrote ‘here there are three fundamental problems whose
solution is very difficult and which will not be possible without a penetrating study of the sub-
ject’. Anyone who has played around with conjugacy classes will know that the second problem
is hard enough even if we have a “normal” group, never mind just the group presentation. To
illustrate the other two, consider the following examples.

Example II.2.

1. Consider the group presentation

⟨a, b, c | a2 = b2 = c2 = (ab)3 = (bc)3 = (ac)2 = ε⟩

and the word
(b, a, c, b, a, b, c, a, b, c)

(This expression is taken from [9, p. 62].) If asked to find an equivalent word with
minimal number of letters, one might play about with this and the group relations for
hours, and even if one found an equivalent word, of length say 3, how would one know it
was minimal? In fact this group is isomorphic to S4, the permutation group on 4 letters,
with isomorphism 

a 7→ (12)

b 7→ (23)

c 7→ (34)

If one then explicitly wrote out the element above as a product of transpositions, it is the
work of a few seconds to verify that this word in fact represents the identity.

2. Consider the group presentation [23, p. 1]

⟨a, b | a−1ba = b2, ab = a2⟩

It turns out that this is in fact the trivial group in disguise, which can be seen with a little

20



bit of manipulation of the relations:

ab = a2 ⇒ b = a

⇒ a−1ba = b−1bb = b2

⇒ b = b2

⇒ a = b = ε

This particular example is quite straightforward; but harder is writing down a procedure
which will work for any presentation.

In fact there exist groups for which the Word Problem is not only very difficult, but prov-
ably unsolvable, though examples tend to be constructed and rather artificial as a result [10,
section 9.4, proposition 19]. Similarly the Conjugacy and Isomorphism Problems are insolu-
ble in general; see [10, chapter 9], proposition 19, section 9.5, paragraph 1; and theorem 25
respectively.

There is one more serious problem with defining a group purely using a presentation, which
will be a constant concern for us when looking at Coxeter groups, and which is a direct result
of the Isomorphism Problem: a given group will have many different presentations, with dif-
ferent relations, and even different numbers of generators. For abelian groups, one can use the
equivalence with Z-modules and then the linear structure on these, to write down a procedure
to reduce a given set of generators and relations to a “most efficient” presentation [21, chapters
9–12]. In general however one cannot do this, so one can only work with the presentation one is
given. Then the properties one proves are, in general, dependent on the choice of presentation,
and so not necessarily fundamental properties of the group itself. In particular in our case,
there will be a number of very important constructions (the Coxeter and Davis complex, as well
as the reflection representation) which are entirely dependent on the choice of presentation1.

II.2 Combinatorial Reflection Groups

We return now, with this in mind, to reflection groups; but in contrast to the first chapter
we shall consider a class of purely combinatorial groups which deserve the name combinatorial
reflection groups. The study of these groups was initiated by J. Tits in the 1960s, who called
them Coxeter groups after H. S. M. Coxeter; K. Brown cites [26], though as it is an unpublished
manuscript we are unable to verify this. The definition of a Coxeter group is as follows.

2A The Definition

Definition II.3. Let S = {s1, ..., sn} be a set of generators, then the group W = ⟨s1, ..., sn |
(sisj)

mij = ε⟩, where {
mij = 1 if i = j,

2 ≤ mij ≤ ∞ if i ̸= j.

is a Coxeter group, and by extension every group which admits a presentation of this form is
also a Coxeter group. As a result of the final paragraph of the previous section, it is necessary to
keep track not only of the isomorphism type (W ) of the Coxeter group in question, but which
presentation of that group we are using. Hence we shall almost always refer to a Coxeter
system, which consists of the pair (W,S), which records this information.

We shall refer to the condition that a group satisfies this definition as (C), which stands for
Coxeter.

1The way people approach this problem is by studying so-called rigidity, which is mentioned in appendix A.3.

21



The mij ’s are allowed to be infinite, this just means that there is no relation between the
generators si and sj , and by convention, we omit these expressions from the presentation.
What, one might justifiably ask, has this definition got to do with reflection groups? Certainly
each of the generators is an involution just as a reflection, and it cannot be denied that such
presentations are particuly simple, as we have very tight control over what kinds of relations
are permitted, but can we really claim to have described every group which might be called a
reflection group using this definition? For this we need a clear idear of what it would mean for
a combinatorial group to be a reflection group (we follow here the exposition of [8, pp. 33–35]
until the next theorem).

Let G be a combinatorial group, with generators A = {a1, ..., an}, which we want to be
“reflections”, so naturally our first requirement will be that each generator has order 2 in G. It
is natural also to expect that the conjugates of a reflection is also a reflection, since conjugation
is like a change of basis which does not fundamentally affect the geometry. We therefore make
the following definition.

Definition II.4. A reflection in a combinatorial reflection group is any group element conju-
gate to a generator. For a Coxeter system (W,S), we write R = {wsw−1 | w ∈ W, s ∈ S} for
the set of reflections.

Being an element of order 2 is not sufficient to characterise a reflection (think of the antipodal
map on a sphere for example); reflections have mirrors which we want to account for. Let H be
a set in bijective corresopndence with the reflections in G, via H 7→ aH ∈ R for H ∈ H. Since
all reflections are conjugate to elements of A in G, we can define an action of G on H via

agH = gaHg
−1 for g ∈ G (II.1)

that is g maps H to the wall corresponding to the reflection which is obtained from aH via
conjugation by g. This captures most of the picture, but we also need to consider the action
of G on the “half-spaces” associated to H. We can think of the half-spaces as elements of the
set H×{±1} (having chosen an orientation for each mirror in some way, you have a “positive”
and a “negative” half-space). Then it is sufficient to define the action of the generators only.
We need ai to act on H × {±1} via

ρai(H,σ) =

{
(H,−σ) if H corresponds to ai,

(aiH,σ) else
; where σ ∈ {±1}. (II.2)

So given a half-space with respect to a wall H, ai swaps this to the other half-space if ai is a
reflection in H, but changes to the corresponding half-space of the image of the wall H as given
by (II.1). This is sufficient to give a sensible definition of what it means for a group to be a
combinatorial reflection group.

Definition II.5. A group G generated by a set A is a combinatorial reflection group if
there is an action of G on H×{±1} such that every generator acts via the involution ρ defined
above. We shall refer to the the condition of satisfying this definition (A) for action, and it
says the group must act on a certain set in a certain way.

Theorem II.1. The definitions of combinatorial reflection groups and Coxeter groups are equiv-
alent. ■

This says remarkably that Coxeter groups describe all possible groups which might reason-
ably be called reflection groups (in the sense of the preceding discussion). For the proof we
shall follow the scheme outlined in [8, chapter II], although we deviate in the details. It requires
proving the equivalence of six conditions on combinatorial groups, the first of which is (C),
and the last of which is (A). We shall be in a position to complete the proof by the end of the
chapter.
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2B Descriptions of Coxeter Groups

Let us look back at the definition of Coxeter systems and see what we can immediately deduce
about them. We have already noted that each generator is of order 2, this means that all
generators are self-inverses, so in the language of combinatorial group theory, the collections of
letters S and S−1 coincide for Coxeter groups, so we can justifiably call S the alphabet of our
Coxeter group (see definition II.1). We might ask what is a necessary and sufficient condition
for a Coxeter group to be abelian, since these are a well-known and studied class of groups. Two
generators commute if and only if the order of their product is 2, i.e. W is abelian if and only if
mij = 2 whenever i ̸= j, so perhaps abelian Coxeter groups are not the most interesting objects
to study. Another easy observation is that the relations are symmetric, that is mij = mji,
indeed:

(sisj)
mji = sisj · · · sisj = si(sjsi)

mji−1sj

= si(sjsi)
−1sj = sisisjsj = ε.

This shows that mij divides mji, but applying the same argument to sjsi reduces to a contra-
diction unless they are equal.

The very notation which we have used suggests another definition we could make, which
although at first is little more than a typographical convenience, will be be instrumental later
(see definition III.1).

Definition II.6. Given a Coxeter system (W,S), the associated Coxeter matrix M =

(mij)
#S
i,j=1 is the square matrix of dimension #S, whose ijth entry is mij .

From the definition of (W,S) and the observations above, we know that M is symmetric
with 1’s along the leading diagonal, and all other entries in {2, ...,∞}. It is clear that specifying
a matrix of this form is equivalent to specifying a Coxeter system. Another way of expressing
a Coxeter system is as follows.

Definition II.7. Let (W,S) be a Coxeter system with Coxeter matrix M = (mij)i,j . The
Coxeter diagram ν of (W,S) is a labelled graph whose vertex set is S, and where the edge
{sisj} is present and labelled mij whenever mij ≥ 3. By convention, edges labelled 3 usually
have their label suppressed.

Specifying a Coxeter diagram uniquely specifies a Coxeter system and its Coxeter matrix.

Example II.3. The following are 3 equivalent representations of the same Coxeter system.
Group presentation:

⟨s1, ..., s4 | s2i = (s1s2)
3 = (s1s3)

2 = (s1s4)
2 = (s2s4)

4 = (s3s4)
7 = ε⟩

Matrix: 
1 3 2 2
3 1 ∞ 4
2 ∞ 1 7
2 4 7 1


Diagram:

∞
4 7

Once one gets used to the notation, the Coxeter diagram tends to be the easiest and most
efficient representation.
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Why do we omit the edges of ν labelled 2? It certainly simplifies the diagram significantly,
otherwise each graph would be the complete graph on n vertices, with labels, which would be
inscrutable; there is however a more mathematical reason, which relates to the fact thatmij = 2
means that si and sj commute, so do not really interact with one another. This shall be made
more precise in the next section.

Example II.4. We consider Coxeter systems with small numbers of generators.

1. If S = ∅, then W must be the trivial group.

2. If there is only one generator s, W = ⟨s | s2 = ε⟩ is the cyclic group of order 2.

3. If S = {s, s′}, we get one interesting relation W = ⟨s, s′ | s2 = s′2 = (ss′)m = ε⟩ where
2 ≤ m ≤ ∞. So m parametrises an infinite family of groups which are typically denoted
I2(m). We distinguish two cases: m finite and m infinite.

If m is finite, W is the dihedral group of finite order 2m with which everyone is familiar.
W can be made to act on R2 by letting s and s′ act as reflections in two lines through the
origin which intersect act an angle π

m . Another common presentation for this group is

⟨s, p | s2 = pm = ε⟩

where p corresponds to the rotation ss′. Using the equation pns = spm−n which holds
for any integer n, one can take any word in {s, p} and write it in the form pa or spa for
some 0 ≤ a ≤ m − 1, which in the alphabet {s, s′} reads (s, s′, ..., s, s′) or (s′, s, ..., s, s′)
respectively. Since s and s′ do not commute, these are all distinct elements except for the
longest of these words which correspond to the same element, since

(ss′)m = ε =⇒

lenght m︷ ︸︸ ︷
ss′ · · · =

lenght m︷ ︸︸ ︷
s′s · · · .

Explicitly for W = I2(4) ∼= D4, we have

⟨s, s′ | s2 = s′2 = (ss′)4 = ε⟩

which has 8 elements:
ε

s s′

ss′ s′s
ss′s s′ss′

ss′ss′ = s′ss′s

Ifm is infinite there is no extra relation, so all of the words (s, s′, ...) and (s′, s, ...) represent
distinct elements, they are in fact the unique minimal expressions (see definition II.10
below) for each of the elements. This group is called the infinite dihedral group, written
D∞, and it is an example of an infinite Coxeter group, see example I.5. (The above is
based on [6, chapter IV, section 1.2])

The above discussion in fact outlines a solution to the Word Problem for dihedral groups:
given a word, use pns = spm−n in the case m is finite to get it into the standard form,
after deleting occurrences of ss and s′s′. Then this is unique unless the standard form
has length m, in which case there are two possibilities. For the infinite case just delete
occurrences of ss and s′s′ to get an alternating word which is unique to that group element.
Now all one needs to do in either case is compare these standard forms.
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Example II.5. Every example we have done so far has been motivated in some way or another
by geometry. There is an example completely motivated by algebra. Consider the group of
permutations of n objects Sn. It is an elementary result about permutations that every per-
mutation can be decomposed into a product of transpositions, which is another way of saying
that Sn is generated by transpositions, which are permutations of order 2. This suggests that
Sn might be a Coxeter group. Sn is generated by

S = {(1, 2), (2, 3), ..., (n− 1, n)}

If we denote the transposition (i, i+ 1) by si for 1 ≤ i < n then it is easy to see that the order
mij of sisj is

mij =


1 if i = j,

3 if i− j = ±1,

2 otherwise.

The group generated by S with the corresponding Coxeter relations turns out to by isomorphic
to Sn, and has Coxeter diagram as seen in figure II.1. In the context of Coxeter groups, these
groups are denoted An−1

2 (where the subscript denotes the number of generators). We already
saw a foretaste of this in (1) of example II.2. With this example, Cayley’s theorem says that
every finite group is a subgroup of a Coxeter group.

· · ·

Figure II.1: The Coxeter diagram corresponding to the group An−1, which has n− 1 nodes.

2C Special Subgroups and Irreducibility

Definition II.8. Let (W,S) be a Coxeter system, and let T be a subset of S. We write WT

for the subgroup ⟨T ⟩ of W generated by T (i.e. the group generated by T with all the relations
of W which use only letters of T ). Such subgroups are called special subgroups, and then T
is called a special subset of S.

It is clear that it does not make sense to talk about the special subgroups of a Coxeter
group, only of a Coxeter system, because the definition is entirely dependant on the choice
of presentation. Note also that in general a Coxeter system will have many subgroups which
are not special, as an example, if the Coxeter group can be realised as a geometric reflection
group in the sense of chapter I, then we might consider its subgroup of orientation preserving
symmetries which necessarily contains no reflections at all, so certainly cannot be generated by
them.

Proposition II.1. Let (W,S) be a Coxeter system, with special subgroup WT , then (WT , T ) is
a Coxeter system. [6, chapter IV, section 1, theorem 2(i)]

Proof. After relabelling, let S = {s1, ..., sn}, and T = {s1, ..., sk} for some k ≤ n. If the Coxeter
matrix corresponding to (W,S) isM = (mij)

n
i,j=1, from the definition all of the relations defining

WT are given by the matrix M = (mij)
k
i,j=1, which is a valid Coxeter matrix, and so defines a

Coxeter system. Hence (WT , T ) is a Coxeter system. ■
2This notation should not be confused with the alternating subgroup of Sn, which is often denoted An. We

shall not discuss the alternating subgroup, so there should be not chance for misunderstanding.
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Theorem II.2. Let (W,S) be a Coxeter system, and let (Ti)i∈I be a partition of S for some
index set I such that for all i ̸= j ∈ I, the generators in Ti commute with those in Tj. Then W
is isomorphic to the direct product of the collection (WTi)i∈I .

Proof. We proceed by induction on the size of I. There is nothing to prove if #I = 1. Since
each set of generators Ti commutes with every other set, WTi commutes with

⋃
j∈I\{i}WTj , so

WTi is normal in W . The product of all WTi ’s contains all of S, and hence W . By induction
WS\Ti

is the direct product of (WTj )j∈I\{i}, and so it only remains to show that WTi intersects
with this trivially, but this follows from the fact that the Ti’s partition S. [17, proposition
2.2] ■

This formalises the assertion that the generators commuting means that they do not interact.
It also motivates the following definition.

Definition II.9. A Coxeter system is irreducible if it does not admit a non-trivial direct
product decomposition as in the above theorem. Otherwise it is called reducible.

We can simplify our study of Coxeter systems because we only need to consider irreducible
Coxeter systems; all others can be built out of these. This also fully justifies us omitting the
edges labelled 2 in the Coxeter diagram:

Lemma II.1. A Coxeter system is irreducible if and only if the corresponding Coxeter diagram
is connected. If the diagram is not connected, the connected components correspond to the
irreducible components of the direct product decomposition. [loc. cit.] ■

II.3 Some Combinatorial Results

In this section we shall get our hands dirty so to speak, and prove some combinatorial results
about Coxeter systems. These are just a few of the results which one can prove, but we have
chosen results which we think are quite interesting, and not too hard to formulate; moreover
they will turn out to be very useful later. For those interested in group theory of this flavour,
see [6] in particular chapter IV section 1; and [9] chapters 2–5, who explore the combinatorial
properties of Coxeter groups more deeply. First a definition which is indispensable: one can
define a notion of length on a combinatorial group.

3A The Length Function

Notation II.2. When referring to the indexed generators in the set S, we have typically been
labelling them s1, ..., sn, where naturally each is distinct from the others. As we start to write
down expressions for particular group elements of W , in which the same generator may appear
multiple times in different places, we shall avoid using the same notation to limit confusion. We
shall tend to use t1, ..., tk, where each ti is understood to be a generator in S, but different ti’s
may correspond to the same generator.

Definition II.10. Let (W,S) be a Coxeter system, and let w ∈ W . If (t1, ..., td) is a word
representing w in the generators S, its length is the integer d. A word representing w of
minimal length is called a reduced word for w, or a minimal expression. Then the length
of w, written lS(w), or just l(w) if S is clear from context, is the length of a reduced word for
w.

As with special subgroups, the length of group elements is dependent on the choice of
presentation, and hence on S, which is why we record this information in the notation of the
function. We shall prove three propositions using the length function:
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Proposition A. Let (W,S) be a Coxeter system, and let w ∈ W . Then l(sw) = l(w) ± 1 for
all s ∈ S. [9, lemma 2.2.1]

Proposition B. Let (W,S) be a Coxeter system with length function l. W is finite if and only
if there is a unique longest element in W with respect to l. [9, theorem 5.2.4]

Proposition C. A group W generated by a set S is a Coxeter group if and only if it satisfies
the deletion condition (D):

If w ∈W is represented by the word (t1, ..., td) with d > l(w), then there are indices
i < j such that w = t1 · · · t̂i · · · t̂j · · · td.

where t̂i indicates that that letter has been deleted from the expression. [8, section II.1, corollary]

First we shall need some basic properties of the length function.

Lemma II.2. Let (W,S) be a Coxeter system, and let w,w′ ∈W .

1. l(w) = 0 if and only if w = ε,

2. l(w) = 1 if and only if w ∈ S,

3. l(w−1) = l(w),

4. ∥l(w)− l(w′)∥ ≤ l(ww′) ≤ l(w) + l(w′).

[3, proposition 1.1]

Proof. The first two claims are obvious.

3. Suppose (t1, ..., td) is a minimal expression for w, but that l(w−1) > d. This gives a
contradiction since (t−1

d , ..., t−1
1 ) is a word representing w−1 of length d, so l(w−1) ≤ l(w).

A symmetric argument gives the opposite inequality.

4. Clearly we have that l(ww′) ≤ l(w) + l(w′). On the other hand

l(w) = l((ww′)w′−1) ≤ l(w′w) + l(w′−1)
3
= l(ww′) + l(w′)

hence l(w)− l(w′) ≤ l(ww′).

■

Proof of proposition A. By an application of lemma II.2(4) with one of the group elements
replaced by s, we get l(w) − 1 ≤ l(sw) ≤ l(w) + 1, so we need only rule out the possibility
that l(sw) = l(w). We shall do this by showing that l(sw) and l(w) have different parities. Let
F (S) be the free group generated by set S, then let ϕ : F (S) 7→ {±1} be such that s 7→ −1
for all s ∈ S. This extends uniquely to a well-defined homomorphism on F (S). W is obtained
from F (S) by taking the quotient by the subgroup generated by the elements (sisj)

mij , since
the relations of W are of the form (sisj)

mij = ε. Clearly all of these relations lie in the kernel
of ϕ, so it descends to a well-defined homomorphism ϕ :W 7→ {±1}. Now let (t1, ..., tl(w)) be a
minimal expression for w, where ti ∈ S for all i;

ϕ(w) = ϕ(t1) · · ·ϕ(tl(w)) = (−1)l(w),

and
ϕ(sw) = ϕ(s)ϕ(w) = (−1)l(w)+1.

ϕ(w) measures the parity of l(w), so the parity of l(w) and l(sw) differ; in particular l(w) ̸=
l(sw). [17, proposition 5.2] ■

Remark II.1. This proof can immediately be generalised to the case were s is replaced by any
reflection r ∈ R, to say that l(rw) ̸= l(w) for all w ∈W , using the observation that the obvious
word representing r has odd length.
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3B Proposition B

We are going to need to work quite a bit harder to prove the second proposition. For the proof
we need a lemma (lemma II.5), but we can in fact prove a more general result by proving the
“opposite” to this lemma (lemma II.4) as well. The proof of this other lemma will in fact be
useful to us later, and uses some of our ideas from section 2A, so will be very worth while. First
of all some definitions.

Definition II.11. Let t = (t1, ..., tk) be a word in the alphabet S, we write

pi := (t1, ..., ti−1, ti, ti−1, ..., t1); for 1 ≤ i ≤ k

and then the tuple of these pi’s
3 is

R̂(t) := (p1, . . . ,pk).

This defines a collection of reflections derived from a word t. Given a reflection r ∈ R, we define
n(t; r) to be the number of pi’s in R̂ which are words representing r. Then set

η(t; r) := (−1)n(t;r)

Lemma II.3. Let (W,S) be a Coxeter system, and let w ∈ W . If t = (t1, ..., tk) and t′ =
(t′1, ..., t

′
k′) are two words representing w, then

η(t; r) = η(t′; r)

for all r ∈ R. Hence we can define

η(w; r) := (−1)n((t
′′
1 ,...,t

′′
k);r)

where (t′′1, ..., t
′′
k) is an arbitrary expression for w.

Proof. We omit the proof so this section does not get too long, it may be found in [4], see (1.17)
on p. 14. ■

We shall go back to our action ρ defined on the “half-spaces” in equation (II.2). Since we
said that H was in bijective correspondence with the set of reflections R, the set of half-spaces is
in bijective correspondence with the set R× {±1}, and we can define the corresponding action
of W on this set using equation (II.1):

πs(r, σ) = (srs, ση(s; t))

for s ∈ S, since

η(s; t) =

{
−1 if s = t,

+1 if s ̸= t.

As with ρ, this extends to an action of the whole of W on R× {±1}, which it turns out can be
written as

πw(r, σ) = (wrw−1, ση(w−1; r)) (II.1)

see [4, theorem 1.3.2] for details. This was the reason for introducing the η notation. We can
now prove the following.

3p is chosen to stand for palindrome.

28



Theorem II.3 (Strong Exchange Condition). Let (W,S) be a Coxeter system with w ∈ W .
Let (t1, ..., td) be an expression for w, and let r ∈ R. If l(rw) < l(w), then there is some index
i such that rw = t1 · · · t̂i · · · td.

Proof. The first stage of the proof is to establish the equivalence of the following two conditions:

1. l(rw) < l(w)

2. η(w; r) = −1.

If we assume that η(w; r) = −1, and (t′1, ..., t
′
d) is a minimal expression for w, we can conclude

from the definition that n((t′1, ..., t
′
d); r) is odd, and hence r = pi for some i, were pi is the

element represented by the word pi. Hence

l(rw) = l(t′1 · · · t′i · · · t′1t′1 · · · t′d) = l(t′1 · · · t̂′i · · · t′d) < l(w)

as required.
To prove the other direction, we shall prove the contrapositive, so assume that η(w; r) = 1,

then by (II.1)

π(rw)−1(r, σ) = π(w)−1πr(r, σ) = π(w)−1(r,−σ)
= (w−1rw,−ση(w; r)) = (w−1rw,−σ)

π(rw)−1(r, σ) = (w−1rrrw, ση(rw; r)) = (w−1rw, ση(rw; r))

which means that η(rw; r) = −1, and so by the first part of the proof we conclude that l(rrw) <
l(rw), that is l(rw) > l(w).

Finally we apply the second implication proved. Since l(rw) < l(w), −1 = η(w; r) =
(−1)n((t1,...,tk);r), so n((t1, ..., tk); r) is odd, and r = t1 · · · ti · · · t1 for some index i, hence rw =
t1 · · · t̂i · · · tk. [4, theorem 1.4.3] ■

As its name might suggest, this result is very important and useful in the study of Coxeter
groups, not just in the proof of proposition B. We shall indeed have recourse to it in the proof
of proposition C. It is also one of the six conditions involved in the proof of theorem II.1 — in
fact this result is the first step in this proof. One use of the Strong Exchange Condition is in
the proof of the following lemma.

Lemma II.4. Let (W,S) be a Coxeter system with w,w′ ∈W , and r ∈ R, the set of reflections
in (W,S). If l(w) < l(wr) and l(w′) < l(rw′), then l(ww′) < l(wrw′).

Proof. Let us assume that l(ww′) > l(wrw′) and derive a contradiction. If we set r̃ = wrw−1

then it clear that l(wrw′) = l(r̃ww′), and it is not hard to show that we are safe in neglecting
the possibility that l(ww′) = l(wrw′). Let (t1, ..., tk) and (t′1, ..., t

′
k′) be minimal expressions

for w and w′, using the assumption that l(ww′) > l(r̃ww′) we can apply the strong exchange
condition to deduce that either

r̃ww′ = t1 · · · t̂i · · · tkt′1 · · · t′k′ , or
r̃ww′ = t1 · · · tkt′1 · · · t̂′j · · · t′k′ .

for some indices i and j. In the first case we get

l(wr) = l(r̃w) = l(t1 · · · t̂i · · · tk) < l(t1 · · · tk) = l(w)

and in the second case we can note that wrw′ = r̃ww′ = wt′1 · · · t̂′j · · · t′k′ , and hence

l(rw′) = l(t′1 · · · t̂′j · · · t′k′) < l(t′1 · · ·′k′) = l(w′)

so both cases contradict the assumptions of the lemma. [4, lemma 2.2.10] ■
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Here is a very similar result.

Lemma II.5. Let (W,S) be a Coxeter system with w,w′ ∈W , and r ∈ R, the set of reflections
in (W,S). If l(w) > l(rw) and l(w′) > l(rw′), then l(w−1w′) < l(w−1rw′). ■

The proof of this uses root systems which we have not introduced, so it has been omitted.
It can be found in [9, corollary 5.2.2].

Remark II.2. This result is on the face of it quite counter intuitive: we have a reflection r which
shortens both w and w′, but lengthens ww′. One way to resolve this is to imagine that there
may be some cancellation between w and w′, and by putting r in between them, we keep them
apart, and so stopping this cancellation from happening.

Let us play about with the form of this second lemma and see is we can get it to look more
similar the first lemma. First note that

l(rw) = l((rw)−1) = l(w−1r−1) = l(w−1r)

Together with the fact that l(w) = l(w−1), the first hypothesis becomes l(w−1) > l(w−1r).
Then substituting w ↔ w−1 throughout, the statement becomes

l(wr) < l(w) and l(rw′) < l(w′) implies l(ww′) < l(wrw′).

While the lemma which we proved reads

l(wr) > l(w) and l(rw′) > l(w′) implies l(ww′) < l(wrw′).

So taken together, we get the result that l(ww′) < l(wrw′) if either r lengthens both w and w′,
or if r shortens both w and w′.
Now we can prove the second proposition, which we shall recall briefly first.

Proposition B. Let (W,S) be a Coxeter system with length function l. W is finite if and only
if there is a unique longest element in W with respect to l.

Proof. If W is finite, since words are finite strings of letters, and each element has a finite
length, and there are only finitely many of them, there is an element of longest length. We need
to show that it is unique.

As usual, let R be the set of reflections in W , and suppose w0 is an element of longest
length. Then we necessarily have that l(rw0) < l(w0) for all r ∈ R, since equality is ruled out
by remark II.1. We shall show that any element with this property is unique. Suppose w1 ∈W
also satisfies l(rw1) < l(w1) for all r ∈ R; then by lemma II.5 we have l(w−1

0 w1) < l(w−1
0 rw1)

for any r. Replacing r in this inequality by w0rw
−1
0 ∈ R we get that l(w−1

0 w1) < l(r(w−1
0 w1))

for all r. This implies that w−1
0 w1 = ε, i.e. w0 = w1, since if w−1

0 w1 ̸= ε, choose a minimal
expression for w−1

0 w1: (t1, ..., td). Applying the inequality with r = t1 we get

d = l(w−1
0 w1) < l(t1t1 · · · td) = l(t2 · · · td) ≤ d− 1

a contradiction. Hence w0 is unique.
The reverse direction is trivial, since we have a running assumption that all our groups are

finitely presented. (Adapted from [9, theorem 5.2.4]) ■

Now compare this result to the discussion of finite dihedral groups in example II.4. We are
left with the third proposition:
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3C Proposition C

Proposition C. A group W generated by a set S is a Coxeter group if and only if it satisfies
the deletion condition (D):

If w ∈W is represented by the word (t1, ..., td) with d > l(w), then there are indices
i < j such that w = t1 · · · t̂i · · · t̂j · · · td.

where t̂i indicates that that letter has been deleted from the expression.

This will in fact do most of the work towards proving theorem II.1. We have met two
of the conditions, the deletion condition, and the strong exchange condition, which we shall
abbreviate as (SE). We shall be using a number of other conditions throughout this discussion,
and it seems best to introduce them all at the start as opposed to in an ad hoc fashion, so that
we can draw a road map of what we are hoping to achieve.

We have a condition (C) called the Coxeter condition, which is the condition of being a
Coxeter group, i.e. a group satisfies (C) if it satisfies the definition of a Coxeter group (see
definition II.3). We shall need, in addition to (SE), the exchange condition (E), which reads:

Let (t1, ..., td) be a minimal expression for w ∈W , and let s ∈ S. If l(sw) = l(w)−1,
then there is some index i such that sw = t1 · · · t̂i · · · td.

Theorem II.3 in fact reads that (C) implies (SE), and it is clear that (E) is just a special case
of (SE), so we have already proved that (C) implies (E). Our plan now will be to prove (E)
implies (D), and then work our way back, proving (D) implies (E) and (E) implies (C). For
the first implication, we shall actually go via yet another condition, called the folding condition
(F):

Let w ∈ W and s, s′ ∈ S with l(sw) = l(w) + 1 and l(ws′) = l(w) + 1. Then either
l(sws′) = l(w) + 2, or sws′ = w.

(C) (E) (D)

(SE) (F)

=⇒
=⇒

=⇒
=⇒

=⇒=⇒

Figure II.2: The plan to prove (C) ⇐⇒ (D), working clockwise from (C).

Proposition II.2. If a group W generated by S satisfies (E), then it satisfies (D).

Proof. First we prove (F). Suppose (t1, ..., td) is a minimal expression for w, and suppose
l(sws′) ̸= l(w) + 2, that is l(sws′) ̸= l(ws′) + 1, so l(sws′) < l(ws′) + 1. Then by (E) either
there is an index i such that sws′ = t1 · · · t̂i · · · tds′, or sws′ = t1 · · · td. In the first case

l(sw) = l(sws′s′) = l(t1 · · · t̂i · · · tds′s′) = l(t1 · · · t̂i · · · td) = l(w)− 1

which contradicts the assumption that l(sw) = l(w) + 1. In the second case sws′ = w as
required, proving (F).

Now we assume (F) and prove (D). Suppose w = t1 · · · tk with k > l(w). Necessarily k is
at least 2; if k = 2, w = t1t2 and l(w) = 0, i.e. w = ε, so t1 = t2, and w = t̂1t̂2. We now
proceed by induction on k. If t2 · · · tk or t1 · · · tk−1 have length less than k − 1 the inductive
hypothesis means that t2 · · · tk = t2 · · · t̂i · · · t̂j · · · tk for example, so w = t1 · · · t̂i · · · t̂j · · · tk as
required. Suppose therefore that they both have length k − 1, and set w′ = t2 · · · tk−1. Then
l(t1w

′) = l(w) + 1 = l(w′tk) and l(t1w
′tk) = l(w) < l(w′) + 2, so by (F) w = t1w

′tk = w′, or in
other words w = t̂1t2 · · · tk−1t̂k, proving (D). [8, section 3A] ■
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This proves one direction of proposition C.

Proposition II.3. If a group W generated by S satisfies (D) then it satisfies (E).

Proof. Let (t1, ..., td) be a minimal expression for w ∈ W , and let s ∈ S. If l(sw) = l(w)− 1 <
d+ 1, we can apply (D) to st1 · · · td, and delete 2 of its letters. If one of them is s then we are
done, so assume that neither is s and derive a contradiction. We get sw = st1 · · · t̂i · · · t̂j · · · td,
and hence

w = ssw = sst1 · · · t̂i · · · t̂j · · · td = t1 · · · t̂i · · · t̂j · · · td
which has length d − 2, however we assumed that we started with a minimal expression for w
of length d, a contradiction. [8, section 3A] ■

As with the proof that (C) implies (SE), the proof that (E) implies (C) is much harder
than the other proofs. The proof builds up sequentially from a lemma to a proposition, and
then the theorem; however the difficulty, subtly, and beauty are in inverse proportion to the
grandeur of their designation. As such, the lemma in particular needs patience and time to
understand and appreciate, so we suggest assuming the proposition and working through the
proof of the theorem, thus motivating the proposition; then assuming the lemma and working
through the proof of the proposition, which in turn will motivate the lemma. For this proof we
follow [6]; notation has been changed from the original only so as to make it consistent with
the other material herein, and the phrasing has been altered, or sentences added only where
convenient to make the style consistent and to explicate certain points. Throughout we assume
that W is a group generated by S which satisfies (E). We shall only have recourse to (E) in
the proof of the lemma.

Lemma II.6. Let w ∈ W have length d ≥ 1, and let Dw be the set of minimal expressions for
w, and Fw a map from Dw to a group4 G. Let t = (t1, ..., td) and t′ = (t′1, ..., t

′
d) be in Dw, and

suppose that either of

a) t1 = t′1 or td = t′d; or

b) there are s, s′ ∈ S such that tj = t′k = s and tk = t′j = s′ for j running over all odd
indices, and k running over all even indices,

imply that Fw(t) = Fw(t
′). Then one may conclude that Fw is constant.

Proof. We proceed in two steps.
Step 1: let t and t′ be in Dw but assume that Fw(t) ̸= Fw(t

′). w = t′1 · · · t′d so t′1w = t′2 · · · t′d
and is of length at most d − 1. By (E) there is an index h such that w = t′1t1 · · · t̂h · · · td, so
uh = (t′1, t1, ..., t̂h, ..., td) is in Dw. Since t′ and uh share their first letter, (a) is satisfied, so
Fw(t

′) = Fw(uh). If h ̸= d, again by a) Fw(t) = Fw(uh), which contradicts our assumption that
Fw(t) ̸= Fw(t

′), so we must have h = d.
This means that if Fw(t) ̸= Fw(t

′), ud = (t′1, t1, ..., td−1) is inDw and Fw(t) ̸= Fw(ud). Start-
ing with this last expression as an assumption we could play the same trick to get (t1, t

′
1, t1, ..., t

′
d−2)

in Dw with Fw((t1, t
′
1, t1, ..., t

′
d−2)) ̸= Fw((t

′
1, t1, ..., t

′
d−1)), and so on.

Step 2: let (t1, ..., td) and (t′1, ..., t
′
d) be in Dw. We define a sequence of words {τn} for each

4We choose G to be a group because that is what we need for the theorem, in fact this result holds for G a
set.
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integer n with 0 ≤ n ≤ d− 1, and each of length d as follows

τ0 = (t′1, ..., t
′
d),

τ1 = (t1, ..., td),

...

τd+1−q =

{
(t1, t

′
1, ..., t1, t

′
1, t1, t2, ..., tq) if d− q is even, 0 ≤ q ≤ d,

(t′1, t1, t
′
1, ..., t1, t

′
1, t1, t2, ..., tq) if d− q is odd, 0 ≤ q ≤ d.

Denote by (Hn) the proposition

“τn, τn+1 ∈ Dw and Fw(τn) ̸= Fw(τn+1)”

Step 1 shows that (Hn) ⇒ (Hn+1) for 0 ≤ n < d, but (b) says precisely that (Hd) is not true,
so we get

¬(Hd) ⇒ ¬(Hd−1) ⇒ · · · ⇒ ¬(H1) ⇒ ¬(H0)

Were ¬ is the logical negation of a proposition. Hence (H0) is not true. Since τ0 = (t′1, ..., t
′
d)

and τ1 = (t1, ..., td), it follows that Fw((t1, ..., td)) = Fw((t
′
1, ..., t

′
d)), so Fw is constant. [6,

chapter IV, section 1, lemma 4] ■

Remark II.3. This proof can best be understood by drawing an analogy to dominoes. In step
1 we build a machine using hypothesis (a) and (E), which, given a collection of dominoes, will
line them up. In step 2 we make the dominoes themselves (the propositions (Hn)). Step 1 then
lines them up, and hypothesis (b) topples the last domino. By the way they were built, then
the toppling of first domino establishes the lemma.

Proposition II.4. Let G be a group and f : S 7→ G. For s, s′ ∈ S, let m be the order of ss′

and define

a(s, s′) =


(f(s)f(s′))

m
2 if m is even,

(f(s)f(s′))
m−1

2 f(s) if m is odd,

1 if m = ∞.

If a(s, s′) = a(s′, s) whenever s ̸= s′, there exists a map g :W 7→ G such that

g(w) = f(t1) · · · f(td)

for all w ∈W and for any minimal expression (t1, ..., td) of w.

Proof. For any w ∈ W let Dw be the set of minimal expressions for w, and let Fw : Dw 7→ G
defined by

Fw((t1, ..., td)) = f(t1) · · · f(td).

We shall prove by induction on d that Fw is constant, which will establish the proposition. If
l(w) = 0, 1 then this is trivially the case, since #Dw = 1 in both cases, so assume d ≥ 2. Let
w be of length d, and suppose t = (t1, ..., td) and t′ = (t′1, ..., t

′
d) are in Dw. By lemma II.6, we

need only prove that hypotheses a) and b) imply that Fw(t) = Fw(t
′).

a) We have
Fw((t1, ..., td)) = f(t1)Fw′((t2, ..., td)) = Fw′′((t1, ..., td−1))f(td)

for w′ = t2 · · · td and w′′ = t1 · · · td−1. So if t1 = t′1 or td = t′d, the induction hypothesis
gives Fw(t) = Fw(t

′).
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b) Suppose there are s, s′ ∈ S such that tj = t′k = s and tk = t′j = s′ for j running over
all odd indices, and k running over all even indices. If s = s′ then necessarily d = 0, 1
which we have excluded, so we can assume that s ̸= s′. Then the expressions t and t′

are distinct minimal expressions for w in the dihedral group generated by {s, s′}. The
order of ss′ must be a finite number m, because if it were infinite, we would be working
in the infinite dihedral group, in which all elements have unique minimal expressions, see
example II.4. Hence t and t′ of length d = m, have the form

(t1, ..., td) =

{
(s, s′, ..., s, s′) if m is even, or

(s, s′, ..., s, s′, s) if m is odd.

(t′1, ..., t
′
d) =

{
(s′, s, ..., s′, s) if m is even, or

(s′, s, ..., s′, s, s′) if m is odd.

In other words Fw((t1, ..., td)) = a(s, s′) and Fw((t
′
1, ..., t

′
d)) = a(s′, s), and hence by hy-

pothesis Fw(t) = Fw(t
′) as required.

[6, chapter IV, section 1, proposition 5] ■

Theorem II.4. If a group W generated by S satisfies (E) then it satisfies (C).

Proof. Let G be a group, and f : S 7→ G a function such that (f(s)f(s′))m = ε whenever ss′ is
of finite order m in W . Such a map satisfies the hypotheses of proposition II.4, so there exists
a map g extending f to W such that g(w) = f(t1) · · · f(td) whenever (t1, ..., td) is a minimal
expression for w. To show thatW admits a presentation of the required form, that is, it satisfies
(C), it is sufficient to show that g is a homomorphism because the claim then follows from the
first isomorphism theorem. That g is a homomorphism follows from

g(sw) = f(s)g(w)

for all s ∈ S and w ∈ W , since S generates W . This formula follows from proposition A, since
this says that there are only two possible cases:

1) l(sw) = l(w)+1, in which case, if (t1, ..., td) is a minimal expression for w, then (s, t1, ..., td)
is a minimal expression for sw, and the formula follows from the definition of g.

2) l(sw) = l(w)− 1, in which case set w′ = sw, then w = sw′ and l(sw′) = l(w′) + 1 and by
the first case g(w) = f(s)g(sw), and hence f(s)g(w) = g(sw) since (f(s))2 = ε.

[6, chapter IV, section 1, theorem 1] ■

The key to this proof is showing that the function g is well-defined, i.e. that it does not
depend on the choice of minimal expression for w. The proposition is merely bookwork to
establish that the function satisfies certain conditions, there real power of the proof is in the
lemma which establishes that the function is constant on the set of minimal expressions for a
given element w.
This completes the proof of proposition C.

3D Proof of Theorem II.1

We have just proved that (C) and (D) are equivalent. To justify that Coxeter groups describe
all possible combinatorial groups we need to prove that (C) and (A) are equivalent. That (C)
implies (A) requires only that one check that the actions ρ defined by (II.2) satisfy the relations
of a Coxeter system. This is a simple exercise which we leave to the reader. As a hint, K. Brown
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proves it in the case of a particular group in [8, capter II, section 2C], and the general case is
essentially the same.

To complete the proof, all we need to do is show that (A) implies (D). This can be proved
independently of the material in chapter I [8, chapter II, section 1, corollary], but for brevity
we shall make use of our work there. By the way that we derived condition (A) it should not
be a surprise that the material in the first chapter applies to groups which satisfy (A). We
need to define the notion of a chamber with respect to the abstract set of mirrors H × {±1}.
One cannot use the obvious direct analogue of definition I.5, since there is no simple way to
incorporate the non-emptiness condition, and so you would end up with too many cells, most
of which were “empty”. Instead we proceed as follows.

Definition II.12. Let W be a combinatorial group with generators S which satisfies (A). Let
the subset of H which corresponds to S be {H1, ...,Hn} then the fundamental chamber is the
n-tuple C = (H+

1 , ...,H
+
n ), where H+

i abbreviates the half-space (Hi,+1) inH×{±1}. With the
obvious generalisation of notation, the n-tuple (H ′σ

1 , ...,H
′σ
n )5, with H ′σ

i = H ′+
i or H ′−

i and H ′ ∈
H, is a chamber if there is w ∈W such that (H ′σ

1 , ...,H
′σ
n ) = ρw(C) := (ρw(H

+
1 ), ..., ρw(H

+
n )).

The definitions of wall, adjacent, gallery, et cetera now carry straight over from before. The
proofs of proposition I.1 and theorem I.1 require only the notions of chambers, adjacency, and
galleries with the exception of step 1 of the proof of the theorem:

Step 1:

Let D be a chamber with wall H, and let s be reflection with respect to H. Then
ρs(D) and D are adjacent along H, and moreover they are distinct.

Indeed, let D = (H ′σ
1 , ...,H

′σ
n ), with H = H ′

1 the mirror corresponding to ρw(H
+
1 ). Then

ρs(D) = (ρs(H
′σ
1 ), ..., ρs(H

′σ
n ))

(II.2)
= ((H ′−σ

1 ), ..., (sH ′σ
n ))

so indeed D and ρs(D) are adjacent. They are also clearly distinct.
This means that those results hold, and in particular, the proof of step 5 shows that (D) is

satisfied. This completes the proof of theorem II.1.

Notes

1) This chapter does not follow any one source, it amalgamates material from [4], [6], [8],
and [9] in the main. The exposition throughout is our own.

2) The overall scheme we use to prove theorem II.1 follows that in [8], however we have
diverged from his approach in many of the details. The pleasing interplay between propo-
sitions A, B, C, and the proof of this theorem arose naturally during the course of writing
this chapter, and was not planned.

3) The proof of proposition B requires lemma II.5, but instead we prove its cousin II.4.
We came upon lemma II.4 while searching for a proof of lemma II.5 which avoided root
systems. While that search was ultimately unsuccessful, we chose to include the related
result and its somewhat long and involved proof because it allowed us to include the strong
exchange condition which was useful later. We have not seen the connection between these
two lemmata mentioned anywhere.

5Note that this tuple will contain elements from the whole of H × {±1}, and not just the half-spaces of
{H1, ..., Hn}. We are defining a chamber by its “walls”, and the associated half-spaces, noting that the rest of
the “hyperplanes” in H are not needed to define that chamber.
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4) We have not seen the approach given in the last section anywhere else. It is quite obvious
why, but this notational minefield will illustrate the usefulness of the reflection represen-
tation in the next chapter.
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Chapter III

Coxeter Groups: A Good Class of
Combinatorial Groups

In the previous chapter we introduced and discussed combinatorial group theory in general,
and in particular we highlighted many fundamental problems with approaching group theory
in this way. We then went on to introduce Coxeter groups as combinatorial reflection groups,
and spent quite a bit of time proving some combinatorial results about Coxeter systems. In this
chapter we shall introduce a construction called the reflection representation which will go quite
some way to clearing up the concerns we had for combinatorial groups in the particular case
of Coxeter groups. The reflection representation is the natural representation of a reflection
group on a real vector space. We shall prove Tits’ Theorem which in one go shows that the
representation has all of the properties we could ask of it. With this we shall be able to bring
the geometry of the first chapter into the ideas of the second chapter, and see that our proofs
can be significantly streamlined. Indeed combinatorial questions which seemed forbidding, if
not almost impossible, suddenly become almost trivial. We shall see this in the case of the word
problem, where we shall be able to give two geometric solutions. We shall also be able to study
and classify the class of finite Coxeter groups, which is of fundamental importance to the study
of Coxeter groups in general.

III.1 The Reflection Representation

1A The Definition

In section 2B of the previous chapter we introduced the Coxeter matrix, promising that it would
serve us as more than just a typographical convenience (indeed one would hope so, since it was
immediately superseded in that regard by the Coxeter diagram). Now that time has come with
the following definition.

Definition III.1. Given a Coxeter matrix M with entries mij of rank n, let V be a real vector
space of dimension n with basis {e1, . . . , en}. Define on V the symmetric bilinear form B
via

B(ei, ej) = − cos

(
π

mij

)
That this is a sensible definition to make can be seen by comparing this to equation (I.1) in
theorem I.2.

We shall use this bilinear form to make W , the Coxeter group associated to M , act on V ,
such that the generators of W , S (which are determined by M) act as linear reflections with
respect to B. To be rigorous, one must worry about the possible degeneracy of B, but this
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turns out not to be a problem, see [6, chapter V, section 4, proposition 1]. Recall the equation
for a reflection in Euclidean space given in definition I.2. Let 1 ≤ i ≤ n, and define

σi : V 7→ V : v 7→ v − 2B(v, ei)ei

Each σi is a linear reflection of V in the hyperplane orthogonal1 to ei, so σi ∈ GL(V ), where
GL(V ) is the group of matrices which act on V as linear transformations (so if V = Rn,
GL(V ) = GLn(R)).

Definition III.2. Let (W,S) be a Coxeter system, let V be a real vector space of dimension
#S, with corresponding symmetric bilinear form B. The reflection representation of (W,S)
is given by the homomorphism ρ :W 7→ GL(V ) which maps the generators S by

si 7→ σi.

Remark III.1. For an arbitrary group G, a representation is a vector space V along with a
homomorphism ρ : G 7→ GL(V ). A representation can also be thought of as a way of getting a
group to act on a vector space by geometric transformations, which is why we are using one here.
Another interpretation is that we are realising the group as a subgroup of a group of matrices in
some sense. We shall not need to consider the reflection representation in the broader context of
representation theory, but the interested reader can find an excellent introduction to the subject
in [24]. We record some of the basic definitions from representation theory below as they will
be relevant to us.

Definition III.3. Let G be a group, V a vector space, and ρ a representation of G on V . ρ
is faithful if it is injective. Since ρ is necessarily surjective onto its image, and the image of
a group under a homomorphism is a group, this means that G is isomorphic to a subgroup of
GL(V ). If G has a faithful representation, it is called a linear group.

ρ is irreducible if it leaves no non-trivial subspace of V invariant. In other words, there
is no proper subspace of V , say {0} ⊊ V ′ ⊊ V , such that for all v ∈ V ′, and for all g ∈ G,
the action of the matrix ρ(g) ∈ GL(V ) takes v to another vector in V ′. If such a an invariant
subspace does exist, we say ρ is reducible. Then ρ is completely reducible if V decomposes
into a direct sum of subspaces, such that ρ restricted to each is an irreducible representation.

Lemma III.1 (Macshke’s Theorem). If ρ is a reducible representation of a finite group, then
it is completely reducible. [24, lemma 3.13] ■

This is a standard result from representation theory, the proof of which we omit.

Remark III.2. We have now seen three definitions which are, or at least seem to be, related.
A collection of hyperplanes being essential (definitions I.4 and I.12), a Coxeter system being
irreducible (definition II.9), and a representation being irreducible (definition III.3).

It is clear that the reflection representation is irreducible if and only if the collection of
hyperplanes in V associated to the reflections σi is essential. On the other hand there is no
logical connection between a Coxeter system being irreducible, and its reflection representation
being irreducible (one can construct examples which are one but not the other, and vice versa)2.
This lexical annoyance is something which must be born in mind throughout our discussion,
particularly in theorem III.4 and its proof.

We can use the reflection representation to prove two results which naively are so obvious
that they are not worth mentioning, and indeed which we have tacitly assumed to be true so
far.

1Orthogonal with respect to B.
2It turns out that a Coxeter group is irreducible if and only if a representation U defined in [6, p. 87] is

irreducible, so this clash of terminology has arisen for justifiable reasons.
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Proposition III.1. Let (W,S) be a Coxeter system with presentation ⟨s1, ..., sn | s2i = (sisj)
mij =

ε⟩ as usual. Then

1) each si represents a distinct non-trivial element of W 3, and

2) the order of sisj is mij
4.

Proof. Clearly σi and σj act as different reflections of V , since ei and ej are different basis
elements for i ̸= j. The homomorphism ρ guarantees that si and sj are therefore distinct and
non-trivial, proving (1).

Let i ̸= j be chosen such that mij is finite, and write V0 = Rei ⊕ Rej . Let V1 be the
orthogonal complement of V0 in V . Both V0 and V1 are invariant under the action of σi and σj ,
which generate the dihedral group Dmij acting on V0, and leaving V1 fixed. This means that
σiσj has order mij , and so by ρ, the order of sisj must be a multiple of mij ; but we already
know that it is a divisor, so we must have that the order of sisj is exactly mij . What if mij

is infinite. With the same decomposition of V as above, σi and σj still leave V0 invariant, so
consider the action restricted to V0. One may then explicitly calculate σiσj(v), for some general
v = αei + βej , noting that B(ei, ej) = −1 and B(ei, ei) = B(ej , ej) = 0 and thereby show that
it has infinite order. [8, section II.5, theorem A] ■

1B Tits’ Theorem

We can construct the reflection representation for any combinatorially defined Coxeter system,
and it shows that every Coxeter group is homomorphic to a geometric group generated by
reflections. We would ideally like to use this to apply the ideas of chapter I to Coxeter groups.
In order to be able to do this, we need the answers to the following two questions to be yes:

1) Is ρ an isomorphism onto its image?

2) Does W act discretely on V via ρ?

More remarkable than the fact that the answer to both is yes for every Coxeter system, is that
both results follow almost immediately from the same theorem. Before we can state this, we
need another definition from representation theory.

Definition III.4. Let G be a group, V a vector space with dual space V ∗, and let ρ : G 7→
GL(V ) be a representation of G. Then the dual representation of ρ is ρ∗ : G 7→ GL(V ∗),
defined by (ρ∗(g)f)(v) = f(ρ(g−1)v) for v ∈ V , and f ∈ V ∗. g−1 is needed instead of simply g
to make sure ρ∗ is a well-defined homomorphism.

For our purposes V is always finite dimensional. We have a basis of V , so we can identify
V ∗ with V when B is non-degenerate. One might wonder therefore why we bother considering
the dual5 representation of the reflection representation and not just work with the reflection
representation directly. The answer is that there is no easy way to define a fundamental domain
for the action of W on V in general since there is no natural orientation on the hyperplanes
corresponding to each σi. In V

∗ on the other hand we can make the following definitions:

Definition III.5. For each s ∈ S write

Hs = {f ∈ V ∗ | f(es) = 0}
3(2) of example II.2 shows that two ostensibly different generators of a combinatorial group may turn out to

be the same element.
4The corresponding relation in the presentation only guarantees that the order of sisj divides mij .
5In some books, the dual of the reflection representation is called the contragredient representation.
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As = {f ∈ V ∗ | f(es) > 0}

which is the hyperplane in V ∗ (respectively the positive half-space in V ∗) corresponding to s.
Then the fundamental chamber of ρ∗ is C =

⋂
s∈S As. C is an open simplicial cone in V ∗

(see lemma I.16). The translates of C under ρ(W ) are called the chambers of ρ∗.

We shall abbreviate ρ∗(w)C to wC henceforth to simplify notation. It is unambiguous both
that, and how w is acting on C.

Definition III.6. Let (W,S) be a Coxeter system, with dual reflection representation ρ∗ on
V ∗. Let C be the fundamental chamber for this action, then the Tits cone is the subset of V ∗

given by

U = U(W ) =
⋃

w∈W
wC

Theorem III.1 (Tits’ theorem). If (W,S) is a Coxeter system, with the notation above, C ∩
wC = ∅ whenever w ̸= ε.

This is the equivalent result to step 5 of the proof of theorem I.1, however we cannot just use
that proof because we cannot assume the discreteness condition is satisfied if W is infinite. For
the proof we follow [16, chapter I, section 2]. We shall reduce to the case that W is a dihedral
group, in which case the following lemma will come in useful.

Lemma III.2. Let T = {s, s′} be a subset of S so that WT ⊆ W is a dihedral group (see 3 of
example II.4), and suppose w ∈WT . Then either

a. w(As ∩As′) ⊆ As and lT (sw) = lT (w) + 1, or

b. w(As ∩As′) ⊆ sAs and lT (sw) = lT (w)− 1.

Proof. For ease of notation, we can assume W = WT and V = Res ⊕ Res′ . Writing m for the
order of ss′ in W , we consider two cases:

Case i: m is finite, so V is Euclidean and we can identify V with V ∗. The result then follows
from 3 of proposition I.1.

Case ii: m is infinite. Let {f, f ′} be the basis of V ∗ dual to {es, es′}. We can then explicitly
compute the action of {s, s′} on {f, f ′} via ρ∗. We find

ρ∗(s)f = −f + 2f ′, ρ∗(s)f ′ = f ′, ρ∗(s′)f = f, ρ∗(s′)f ′ = 2f − f ′.

Let L be the affine line {tf + (1 − t)f ′ | t ∈ R} which connects f and f ′. The equations
above show that L is stable under the action of ρ∗(W ), so s and s′ act on L by reflections in f
and f ′ respectively (see example I.5). Writing I for the open line segment connecting f and f ′,
it is clear that As ∩As′ =

⋃
λ>0 λI from which the claim follows. [16, chapter 1, lemma 2.2] ■

The general case of this lemma, from which the theorem will follow, is as follows.

Lemma III.3. Let w ∈W and s ∈ S, then either

1) wC ⊆ As and lT (sw) = lT (w) + 1, or

2) wC ⊆ sAs and lT (sw) = lT (w)− 1.

Proof. We shall do induction on n = l(w). Consider the statements (Pn):

If w ∈W with l(w) = n, and s ∈ S, then either

6Since the ei’s form a basis of V , it follows easily that {Hs}s∈S is an essential collection of hyperplanes in V ∗.
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i. wC ⊆ As, or

ii. wC ⊆ sAs and l(sw) = l(w)− 1.

and (Qn):

For any s ̸= s′ ∈ S, let T = {s, s′}, and suppose w ∈ W with l(w) = n, then there
is u ∈WT such that wC ⊆ u(As ∩As′) and l(w) = l(u) + l(u−1w).

If n = 0, w = ε, and taking u = ε we see that both (P0) and (Q0) hold. We do the induction
in two steps:

Step 1: (Pn) and (Qn) implies (Pn+1).
If l(w) = n + 1, we can write w = s′w′ such that l(w′) = n for some s′ ∈ S. If s = s′ then

by (Pn), w
′C ⊆ As so wC ⊆ sAs and l(sw) = l(w′) = l(w)− 1 which is case (ii) in (Pn+1).

If s ̸= s′ we can apply (Qn) to w
′, so there exists u ∈WT satisfying w′C ⊆ u(As ∩As′) such

that l(w′) = l(u) + l(u−1w′). Hence

wC ⊆ s′u(As ∩As′)

By lemma III.2 we have either

a. s′u(As ∩As′) ⊆ As and l(ss′u) = l(s′u) + 1, or

b. s′u(As ∩As′) ⊆ sAs and l(ss′u) = l(s′u)− 1.

If (a) is the case, wC ⊆ As and we get case (i) of (Pn+1). If (b) is the case we have wC ⊆ sAs,
and we must check that l(sw) ≤ l(w), from whence case (ii) of (Pn+1) will follow. We have

l(sw) = l(ss′w′) = l(ss′uu−1w′)

≤ l(ss′u) + l(u−1)

= l(s′u)− 1 + l(w′)− l(u)

≤ l(w′) = l(w)− 1

Step 2: (Pn+1) and (Qn) implies (Qn+1).
Let w ∈ W with l(w) = n + 1. If wC ⊆ (As ∩ As′) then take u = ε and we are done.

Otherwise we can use (Pn+1) to say that wC ⊆ sAs with l(sw) = l(w) − 1; writing w′ = sw,
l(w′) = n. Applying (Qn), we know there is u ∈ WT such that l(sw) = l(u) + l(u−1sw) and
swC ⊆ u(As ∩ As′). Hence wC ⊆ su(As ∩ As′). To complete the step we must check that
l(w) = l(su) + l(u−1sw).

l(w) = l(suu−1sw) ≤ l(su) + l(u−1sw)

but on the other hand

l(w) = l(sw) + 1 = l(u) + l(u−1sw) + 1 ≥ l(su) + l(u−1sw)

This completes the induction. That (Pn) holds for all n almost gives the statement of the
lemma; we need only check that in case (i) we also have that l(sw) = l(w) + 1. In this case,
we have swC ⊆ sAs, so by case (ii) l(w) = l(ssw) = l(sw) − 1 and hence l(sw) = l(w) + 1 as
required. [16, chapter 1, lemma 2.3] ■

Proof of Tits’ theorem. If w ̸= ε then we can write w = sw′ for some s ∈ S such that
l(w) = l(w′) + 1 = n+ 1. By the principle of the excluded middle, lemma III.3 says that
w′C ⊆ As, and hence wC = sw′C ⊆ sAs. Since C ⊆ As we have that C ∩ wC = ∅ as
required. [16, chapter 1, theorem 2.1] ■
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1C Consequences of Tits’ Theorem

By the way chambers of ρ∗ were defined, the following result is immediate.

Corollary III.1. W acts simply-transitively on the set of chambers of ρ∗ (compare to statement
(1) of theorem I.1, this means the action of W is simply-transitive). [16, chapter 1, corollary
2.4] ■

Theorem III.2. The reflection representation and its dual are faithful for any Coxeter system
(W,S). This means that Coxeter groups are linear, and the answer to the first question is yes.

Proof. If ρ∗(w) = ε, then wC = ρ∗(w)C = C, and hence w = ε by Tits’ theorem. The kernel
of ρ∗ is therefore trivial, and so it is injective. From the definition of ρ∗ in terms of ρ it is clear
that the kernel of ρ is contained in the kernel of ρ∗, and hence ρ is also injective. [16, chapter
1, corollary 2.5] ■

Theorem III.3. ρ∗ acts discretely on the interior of the Tits cone U , the corresponding action
of ρ is also discrete. This means that the answer to the second question is yes.

Proof. By transport of structure, it is sufficient to show that ρ∗ is a discrete action, in particular
that the induced topology on ρ∗(W ) in GL(V ∗) is the discrete topology. Let w ∈W , and f ∈ C,
and define Y = {g ∈ GL(V ∗) | g(f) ∈ C}, an open neighbour of the identity in GL(V ∗). By
Tits’ theorem ρ∗(W )∩Y = {id}, and so ρ∗(W ) has the discrete topology in GL(V ∗). [6, chapter
V, section 4, no. 4, corollary 3] ■

These results mean that the reflection representation forms a bridge between chapters I and
II. We can apply this to solve the Word Problem in Coxeter groups, as we shall see in the next
section. However we need to reconcile the picture we built up for infinite reflection groups in the
first chapter with the picture we have here. In that chapter we said that an infinite reflection
group needed to consist of reflections in affine hyperplanes in order to be discrete, however here
we have possibly infinite groups generated by reflections in hyperplanes which all pass through
the origin, and nevertheless we claimed in the last theorem that the action was discrete.

The key is that we were very careful to say that the the action in the case of ρ∗ was discrete
on the interior of the Tits cone, in particular there is no contradiction if U is not the whole of
V ∗ and its interior does not contain the origin. We shall show that this is in fact the case7.

Lemma III.4. Suppose x ∈ −C (where −C is the image of C in V ∗ under the antipodal map).
Then x ∈ U if and only if W is finite.

Proof. Suppose x ∈ U , so x = ρ∗(w)y, for some y ∈ C. By lemma III.3, l(ws) < l(w) if and
only if C and wC lie on opposite sides of Hs, so since C and −C lie on opposite sides of Hs for
all s ∈ S, w is the unique longest element in W , and so W is finite by proposition B and its
proof. Conversely, if W is finite, take w its longest element, then wC = −C, and so x ∈ U . [13,
lemma D.2.3] ■

Corollary III.2. If W is infinite, U contains no line through 0. Moreover, the following are
equivalent:

1) W is finite,

2) U is the whole of V ∗, and

3) 0 is in the interior of U .

7In [1, section 2.7], P. Abramenko and K. Brown axiomatise the infinite hyperplane arrangements which admit
the structure and theory which we developed in chapter I.
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Proof. The first claim is obvious, since we could choose any chamber of U to be the fundamental
chamber. The only implication which is not immediate is that (3) implies (1). By the lemma,
if W is infinite, there is x ∈ V ∗\{0} which is not in U , it follows that λx is not in U for all
λ > 0. Taking the limit as λ goes to 0 we see that 0 is not in the interior of U . [1, proposition
2.91], [16, chapter 1, proposition 2.7], and [13, corollary D.2.4] ■

We can in fact write down the interior of U explicitly. Recall that the walls of C are
hyperplanes which correspond bijectively with the generators S, we shall denote the hyperplane
corresponding to s ∈ S by Cs

8. A facet of C is characterised by the maximal set of hyperplanes
such it is in their intersection, so we have one facet for each subset T ⊆ S, we shall denote that
facet CT . Note that these facets are open sets.

Definition III.7. Denote by S, the collection of subsets T ⊆ S such that T generates a finite
special subgroup WT of W . Then we set

C◦ =
⋃
T∈S

CT

and put

I =
⋃

w∈W
wC◦ ⊆ U. (III.1)

Lemma III.5. I is the interior of U .

Proof. I is a union of open sets, so is open in U , and hence is in the interior of U . Conversely
suppose that x ∈ C\C◦. Let T be the subset of S corresponding to the hyperplanes Cs which
contain x, then we know thatWT is infinite. Applying the equivalence of (1) and (3) to the Tits
cone U(WT ) associated to the representation ρ∗(WT ), we see that the “cone-point” of U(WT ) is
not in its interior, so x is not in the interior of U , since it is the image of this cone-point under
the natural inclusion of U(WT ) in U . [13, theorem D.2.6(iii)] ■

How do we use this to recover the picture we had in chapter I? If W is finite, then W acts
“properly” on the whole of V ∗ and the chambers are simplicial cones. If W is infinite, it acts
“properly” in the interior I of its Tits cone U , which is contained in an open half-space with
respect to some hyperplane through the origin. If there were someW–invariant hyper-surface in
V ∗ which was defined as the graph of a function on this hyperplane (or some similar definition),
then we could intersect U with this hyper-surface; then W acts by reflections in “lines” (the
intersections of the hyperplanes wCs with the surface).

That is quite a big if, and a very vague sketch. We shall say something much more concrete
in two special cases when we get to section 3B (we shall have to wait until we have considered
the properties of the symmetric bilinear form B more closely). We have already seen that by
assuming that W acted on the whole of V , we possibly excluded some infinite reflection groups.
In fact, the class of infinite reflection groups which we discussed is called the class of affine
reflection groups (or affine Weyl groups) for obvious reasons. There are other classes of infinite
reflection group which do not fall into this category, for example hyperbolic reflection groups
(discrete symmetries of hyperbolic space generated by reflections in hyperbolic lines)9.

In anticipation however, we can still make use of what we have done in constructing U and
proving theW acts on the chambers in U as we would hope. We can use the walls and chambers
in V ∗ just as we discussed in the first chapter, and indeed the results we proved there will still
be applicable. We shall first use this to discuss the Word Problem for Coxeter groups.

8Previously we were calling these Hs.
9These three together summarise the reflection groups in spaces of constant curvature: finite groups act on

the sphere, affine groups on the plane, and hyperbolic groups on hyperbolic space. The symmetries of these
geometries are covered extensively in [28].
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III.2 The Word Problem

What makes the Word Problem so difficult? We introduced the length function for Coxeter
systems, but this definition extends to any combinatorial group. In the case of dihedral groups
(example II.4) we were able to take any word and put it in a standard form which was a minimal
expression for that element, and which was (almost always) unique. Could we generalise this
approach to other combinatorial groups? We may well be able to play about with the relations
of the group and reduce a word to a minimal expression, and know that we have done so, but
we shall not be so lucky that such minimal expression will be unique. In order to solve the
Word Problem one would need to have a procedure by which, given a minimal expression, one
could use the relations to write down all of the other minimal expressions for that element.
Then, given another word, one could find a minimal expression for it and check whether it
is on the list. The big problem comes in writing down that list. There is no reason a priori
why one should necessarily be able to transform one minimal expression into another minimal
expression without lengthening the word at some intermediate step. If the group is large or
even infinite, the length increases required could be arbitrarily large, and so one would have no
way of checking that all minimal expressions have indeed been found. One might compare it
to potential wells in a physics problem. Minimal expressions are the local minima, but to get
from one local minima to another could take a very large amount of activation energy.

For Coxeter groups, the Word Problem is soluble; and this is because it turns out that one
may transform any minimal expression for an element into any other without increasing the
length of the word in the interim, and moreover, there are finitely many minimal expressions
for each element. This is achieved by a series of so-called M-operations, and was done by Tits
in [27]. It is discussed in detail in, for example [8, pp. 49–51] or [9, pp. 60–62]. The proof is
completely combinatorial, uses the condition (E), or the equivalent condition (D), and gives an
explicit algorithm, based on the one outlined in the preceding paragraph, to check whether two
words correspond to the same element. Here we shall discuss two much more quickly and easily
stated solutions to the Word Problem, both of which are geometric, but which as a result, do
not reveal the structure of the group so plainly as does Tits’ solution.

The first solution of the Word Problem we shall look at is based on theorem III.2 [9, section
4.3, paragraph 1]. Fix a Coxeter system (W,S), and compute the matrices ρ(si) for all si ∈ S.
Now take two words in the alphabet S which we want to compare: (t1, ..., tk) and (t′1, ..., t

′
k′),

with ti, t
′
j ∈ S for all i and j, and compute the matrix products ρ(t1) · · · ρ(tk) and ρ(t′1) · · · ρ(t′k′).

SinceW is isomorphic to its image in GL(V ), the group elements w = t1 · · · tk and w′ = t′1 · · · t′k′
are the same if and only if these two matrices are the same. This method in fact shows that
the Word Problem is soluble for any linear group.

What makes Coxeter groups special amongst linear groups in this regard is that with theorem
III.2 behind us, we have the full power of the discussion in chapter I, since any Coxeter group
is isomorphic to a geometric reflection group. Thus we can use the exegesis first introduced in
remark I.5, which also holds for infinite reflection groups. Let (W,S) be a Coxeter system, and
construct its reflection representation ρ on a vector space V . W is isomorphic to its image ρ(W )
which is a geometric reflection group. Let X be the poset of cells arising from this geometric
reflection group, and choose a fundamental chamber C. If we label this with the identity, then
we can label each chamber D in X by the unique w ∈ W which takes C to that chamber, i.e.
the w such that D = wC. Then galleries from C to wC correspond to words in S which are
expressions for w, via step 3 in the proof of theorem I.1. We can now reinterpret proposition
I.1 as talking about minimal words. The length function for words now coincides with the
combinatorial distance function on the chambers (see definition I.10) via

lS(w) = d(C,wC)
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and in fact, this suggests that we can define a distance function on the combinatorial group W
via [8, p. 34]

d(w,w′) := d(wC,w′C) ≡ l(w−1w′).

How can we use this to solve the Word Problem? Given two words (t1, ..., tk) and (t′1, ..., t
′
k′),

they define galleries

Γ : C, t1C, t1t2C, ..., t1t2 · · · tkC and Γ′ : C, t′1C, t
′
1t

′
2C, ..., t

′
1t

′
2 · · · t′k′C

which define two paths through X starting at C. If the two paths end at the same chamber,
the two words correspond to the same group element, and if they end at different chambers,
they correspond to different elements. We shall return to this way of thinking about things in
the next section.

One may wish to think through this method in the case of D4, comparing example I.2 and
(3) of example II.4.

III.3 Classification of Finite Coxeter Groups

The classification of finite Coxeter groups was first done by H. S. M. Coxeter himself [12].
The proof consists of repeated applications of the criterion for a Coxeter system to be finite
below. Theorem II.2 tells us that we only need to consider irreducible Coxeter systems, because
a reducible Coxeter system is clearly finite if and only if all of the direct summands in its
decomposition into irreducible components are finite. We include this classification in a chapter
aimed at justifying that Coxeter groups are ‘a good class of combinatorial groups’ for a number
of reasons. The first is that the proof is very closely related to the reflection representation, the
main tool of this chapter; the second is that it is unusual that such a classification would exist
give an arbitrary class of combinatorial groups; and the third reason is that the classification
theorem is very useful in the study of Coxeter groups in general, and indeed we shall see an
application of it at the start of the next section.

3A Witt’s Criterion

Theorem III.4 (Witt’s criterion10). Let (W,S) be an irreducible Coxeter system, V a real
vector space of dimension #S, with related bilinear form B. Then W is finite if and only if B
is positive-definite.

For the proof we shall need a definition and some lemmata.

Definition III.8. Let V be a vector space with symmetric bilinear form B. The radical of B
is the subspace of V orthogonal to V :

V ⊥ = {v ∈ V | B(v, u) = 0 for all u ∈ V }

If B is degenerate, then the eigenspace of the matrix of B corresponding to the eigenvalue
0 will indeed satisfy the condition of the definition. The zero vector is always in the radical.

Lemma III.6. Let W be an irreducible Coxeter system with associated bilinear form B. If V ′

is a proper subspace of V which is invariant under the action of the reflection representation of
W , ρ, then V ′ is contained in V ⊥.

10Proved by E. Witt in “Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe” (1941).
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Proof. Let x ∈ V ′, then for all i ∈ {1, ..., n} = I where n = dimV , 2B(x, ei)ei = x−ρ(si)x ∈ V ′.
We want to show that x ∈ V ⊥, so it is sufficient to show that ei /∈ V ′, because this will force
B(x, ei) = 0.

Let J = {i ∈ I | ei ∈ V ′}; we want to show that J = ∅. Since V ′ is a proper subspace of V ,
J ̸= I. Assume J ̸= ∅, then by the definition of W being irreducible, there is t ∈ I\J and u ∈ J
such that 2B(eu, et) ̸= 0. Hence 2B(eu, et)et = eu − ρ(st)eu ∈ V ′. Therefore et itself is in V ′,
and t ∈ J , a contradiction. So we must have that J = ∅ as required. [9, proposition 2.3.7] ■

Lemma III.7. Let (W,S) be irreducible, and let ρ be its reflection representation; then

1) if B is degenerate, ρ is not completely reducible11, or

2) if B is non-degenerate, ρ is irreducible.

Proof.

1) It is a trivial exercise to show that ρ leaves B invariant, i.e. that B(ρ(w)v, ρ(w)v′) =
B(v, v′) for all w ∈W , and hence V ⊥ is an invariant subspace. Since B(es, es) = 1 but B
is degenerate, V ⊥ is proper and non-trivial. Suppose ρ were completely reducible, then
there is another invariant subspace of V , V ′, such that V = V ⊥ ⊕ V ′, but by lemma III.6
V ′ ⊆ V ⊥, a contradiction. Hence ρ is not completely reducible.

2) If B is non-degenerate, V ⊥ = {0}, and lemma III.6 guarantees that any proper invariant
subspace vanishes.

[16, chapter 1, corollary 1.17] ■

Finally we need a lemma from linear algebra which we give without proof.

Lemma III.8. Let G be a group and ρ an irreducible representation of G on a vector space V .
Assume that there is an element g ∈ G such that ρ(g) acts on V by a reflection.

1) Every linear map V 7→ V which commutes with ρ(G) is a scalar multiple of the identity
map.

2) If V is finite dimensional, and B is a non-zero, ρ(G)-invariant bilinear form, then B

is either symmetric or anti-symmetric, and every ρ(G)-invariant bilinear form on V is
proportional to B. ■

Proof of Witt’s criterion. Assume W is finite, so Maschke’s theorem (lemma III.1) says that if
ρ is reducible, it is completely reducible. By the principle of the excluded middle, lemma III.7
guarantees that ρ is irreducible.

Let B be an arbitrary positive-definite symmetric bilinear form on V (such a form always
exists), and let B′ be the sum of its transforms under ρ, so B′ is non-zero and ρ(W )–invariant.
V is finite dimensional since W is finitely generated so we may apply lemma III.8 to conclude
that B = kB′, for some k ∈ R. Since B is positive-definite, it follows that B is negative-definite,
zero, or positive-definite. The observation that B(es, es) = 1 for any s ∈ S guarantees that B
is positive-definite, as required.

Now assume that B is positive-definite. Then the orthogonal subgroup O(n,B) ⊆ GL(V )
is compact. By the proof of theorem III.3, ρ(W ) is a discrete subgroup of O(n,B), and hence
finite. Theorem III.2 says that ρ(W ) ∼= W , and hence W itself is finite, completing the proof.
(Adapted from [9, proposition 5.3.2], [16, chapter 1, theorem 4.1], and [6, chapther V, section
4, theorem 2]) ■

11See definition III.3.
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Remark III.3. The literature does this result quite a disservice. Of the works cited in the
bibliography, only three use this result to prove the classification theorem and attempt a proof12.
The proofs in [9] and [16] are both wrong, while the proof in [6] is inscrutable in parts to anyone
below postgraduate level. A. Cohen attempts to prove that, without the condition that W is
finite, ρ being irreducible is sufficient to conclude that B is positive-definite, however refers back
to a lemma (lemma 5.1.2(ii)) which requires thatW is finite. It also requires that ρ is absolutely
irreducible, the justification for which is buried in lemma 2.3.12 with no cross-reference. H. Hiller
avoids this mistake, but at the same stage of the proof instead refers to a result (proposition
A8) which assumes that B is positive-definite in order to prove that very fact. Between the
three accounts we have managed to assemble a correct proof.

Theorem III.5 (Classification of Finite Coxeter Groups). Let (W,S) be an irreducible Coxeter
system. Then W is finite if and only if the corresponding Coxeter diagram ν is isomorphic to
one of the diagrams in table III.113. Moreover, no two of these groups are isomorphic.

Proof outline. After proving Witt’s criterion, the proof of the classification consists of a rather
tedious checking of various cases, by deriving a contradiction from the fact that B is not positive-
definite in each case. We shall only outline the various steps. Slightly more detail is given in
[9, theorem 5.3.3], and yet more in [6, chapter VI, section 4].
Let (W,S) be an irreducible Coxeter system with n generators, and with Coxeter diagram ν .

Step 1: If ν appears in table III.1, then W is finite.
For the other implication, we henceforth assume that W is finite.

Step 2: If ν ′ is a subgraph of ν , then the Coxeter group corresponding to ν ′ is finite. This
means that we can exclude cases by excluding certain subgraphs; it follows from proposition
II.1.

Step 3: ν cannot contain a cycle.
Step 4: ν cannot contain a vertex with valence greater than 3.
Step 5: If a vertex of ν has valence 3, then all three incident edges have no label (label 3

omitted).
Step 6: If ν has an edge with label at least 6, then n = 2.
Step 7: If ν has a vertex with valence 3, then every edge has no label.
Step 8: ν has at most one vertex with valence 3.
Step 9: If an edge of ν has label 5, then edges on either side of it have no label.
Step 10: ν does not contain any subgraph appearing in table III.2.
Step 11: The only graphs which satisfy steps 3–10 are listed in table III.1. ■

3B The Spaces on which Coxeter Groups Act

What can we say about the spaces on which a Coxeter group acts just by looking at its pre-
sentation? In the case of finite Coxeter groups we can say something quite strong now that we
have the link between geometric and combinatorial reflection groups.

Theorem III.6. An irreducible finite Coxeter group W acts essentially on a vector space V if
and only if the dimension of V is equal to the number of reflections which generate W 14.

12[17] and [13] give an alternative proof of the classification theorem, and [12] was published six years before
Witt’s paper.

13The group G2 is listed separately from the other dihedral groups because it is also a so-called Weyl group.
14This result is weakened if we drop the irreducibility condition, but we can still say something sensible about

the way W acts if we use some results about rigidity, for details, see the appendix A.3.
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An
· · · for n ≥ 1

Bn
· · · 4

for n ≥ 2

Dn
· · · for n ≥ 4

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(m)
m

for m = 5 or m ≥ 7

Table III.1: All Coxeter diagrams corresponding to finite Coxeter systems. The subscript
number in the name of each indicates the number of vertices.

Ã1
∞

B̃n
· · · 4

for n ≥ 3

C̃n
· · ·4 4

for n ≥ 3

Ẽ6

Ẽ7

Ẽ8

F̃4
4

G̃2
6

5

5α
for α ≥ 4

5α
for α ≥ 3

Table III.2: Some Coxeter diagrams corresponding to infinite Coxeter systems. The subscript
n is 1 less than the number of vertices.
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Proof. To prove the forward implication, assume thatW acts essentially on V , then by theorem
I.2 the associated chambers are simplicial cones. Lemma I.1 says then that each chamber has
n walls, and since W is generated by reflections in the walls of any chamber, theorem I.1, W
has a presentation with n generators (which is a Coxeter-type presentation by the proof that
(A) implies (C), in which the generators which appear in the statement of (A) are the same
as those in the presentation eventually constructed for (C) — for details see the proofs of the
various implications either given or cited throughout). By explicit calculation, one can see that
no two non-isomorphic graphs which appear in table III.1 define isomorphic Coxeter systems,
so it makes sense to say that the finite irreducible Coxeter group W has n generators.

For the other implication, assume V is an n–dimensional vector space and (W,S) is a finite
Coxeter system with n generators. Construct the reflection representation of (W,S) on V . By
the proof of theorem III.4 this representation is irreducible, and so by remark III.2 W acts
essentially on V . ■

At the end of section III.1 we described a very vague scheme by which one could extract the
picture we might expect from the Tits cone of the dual of the reflection representation. We can
now look at this in detail for affine and hyperbolic Coxeter groups (as mentioned loc. cit.). In
these cases it turns out that the space is characterised by the signature of B.

Definition III.9. Let B be a symmetric bilinear form on a vector space of dimension n. The
signature of B is the triple (n+, n0, n−), where n+, n0 and n− are the sums of the dimensions of
the positive, null, and negative eigenspaces respectively of the matrix associated to B. Clearly
each of n+, n0 and n− is a non-negative integer, and they sum to n.

We have already seen that W is finite if and only if the signature of B is (n, 0, 0) (i.e. B is
positive-definite) if and only if W acts (i.e. acts properly) on the sphere. Now suppose that W
is an irreducible infinite reflection group in the sense of the first chapter, that is to say, an affine
reflection group. Geometrically then, it acts essentially on a (Euclidean) inner product space V ′

of dimension n− 1, where n is the number of generators, since every chamber is a simplex with
n faces, so has dimension n− 1. The reflections in the walls of a chosen fundamental chamber
C are generators of W , which we shall call S, let {e′1, ..., e′n} be the canonically chosen unit
normals to the walls of C, then there are positive real numbers ci such that

∑
i cie

′
i = 0, and

up to scaling, this is the only non-trivial zero linear combination of the unit normals (see I.1).
In particular we can choose them such that

∑
i ci = 1.

Then we can choose V , an n–dimensional vector space with basis {e1, ..., en}, such that V ′

is a co-dimension 1 subspace in which the orthogonal projection of each ei is e′i. Then the
reflection representation of W on V has associated bilinear form B which restricts to the inner
product on V ′, and has null space V ⊥ generated by v =

∑
i ciei, hence the signature of B is

(n− 1, 1, 0). By the way B is defined, we can conclude that this is the signature for B when we
construct the reflection representation on any real n–dimensional vector space V .

Now, given a reflection representation of (W,S) on V , let v span the null space of B, then B
restricts to a positive-definite form B′ on V ′ := V/vR. The fixed point set of the W action on
V is the intersection of the hyperplanes B(es, ·) = 0, i.e. V ⊥, soW fixes v. We conclude thatW
leaves invariant the hyperplane E0 = {f ∈ V ∗ | f(v) = 0} ⊆ V ∗, which is the hyperplane in V ∗

orthogonal to V ⊥. E0 can be identified with the dual of V/vR, and so with V/vR itself since B′

is positive-definite. We can call the corresponding positive-definite form on E0, B
′′. Finally we

define the affine hyperplane in V ∗ which is parallel to E0 by E = {f ∈ V ∗ | f(v) = 1}, which
inherits the inner product structure of E0. By its definition, it is W–invariant. It intersects
the Tits cone, and W acts on it as an affine reflection group where the walls are wHs ∩E, and
the chambers are wC ∩ E (these claims are rigorously justified in [1, section 10.2.]). We have
already seen this construction in the simplest case of the infinite dihedral group in the proof of
lemma III.2, where E was called the line L, see figure III.1.
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E

V ∗

Hs′ Hs

C

Figure III.1: The Tits cone for D∞, by restricting the action of W to the affine line E, we
recover the picture we saw in example I.5.

We shall treat hyperbolic Coxeter groups even more sketchily now that we have seen the idea
in practice. Indeed, anyone who has seen the construction of (n − 1)–dimensional hyperbolic
space as one sheet of the hyperboloid in Rn−1,1 will readily understand what we must do as
soon as we give the definition of a hyperbolic Coxeter group.

Definition III.10. A Coxeter system (W,S) is hyperbolic of the associated bilinear form has
signature (n − 1, 0, 1), and B(x, x) < 0 for all x ∈ C, where C is the fundamental chamber of
the reflection representation on V . We then also say that W is hyperbolic.

The orthogonal group with respect to a symmetric bilinear form with this signature stabilises
a hyperboloid of two sheets in V , with axis the negative eigenspace. One of these sheets, with
the induced metric from B, is a model for (n− 1)–dimensional hyperbolic space. If we intersect
the Tits cone of W with the corresponding hyper-surface in V ∗, we get a W–invariant (n− 1)–
dimensional geometry on which W acts essentially, and in which it is generated by reflections in
hyperbolic lines. The notions of walls and chambers go through. Just as with the finite Coxeter
groups, there are classifications of the irreducible affine Coxeter groups, as well as the irreducible
hyperbolic reflection groups which have compact fundamental chamber (see appendix A).

III.4 Combinatorial Reflection Groups Re-imagined

In chapter II we proved the equivalence between Coxeter groups and combinatorial reflection
groups. In principle this is enough on its own to justify applying the results in chapter I to
Coxeter groups (at least of finite or affine type). Nevertheless we have gone to all the trouble
of defining the reflection representation, and showing that it has the very nice properties we
require — why do this? The reason is that the definition of combinatorial reflection groups is
still combinatorial, that is the walls and chambers are abstract sets on which W must act in a
way which is complicated to write down (q.v. (II.2)). To re-write the theory of chapter I in this
context gets quite messy, as was seen in section 3D of chapter II. The reflection representation
is a much nicer way to realise combinatorial reflection groups as geometric reflection groups.

With theorem III.2 we have a new way of thinking about Coxeter groups using the language
and theory of chambers and galleries as laid out in III.2. We shall use this new interpretation
to recast what we have looked at in this chapter in a new light. We began by considering
combinatorial group theory in general, and in particular three decision problems. We have
already seen that the Word Problem has a very easily stated geometric solution. The Conjugacy
Problem is difficult for any group, combinatorial or otherwise, so one may not necessarily expect
geometry to help. We know that the Conjugacy Problem for Coxeter groups is solvable [22]. We
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do not know of a solution to the Isomorphism Problem, although the reflection representation
cannot help directly, because the construction is dependent on the choice of presentation.

The main bulk of the previous chapter was spent trying to prove three combinatorial results.
This required 10 other lemmata, propositions, and theorems, in addition to the three main
results, and a lot of heavy work with the length function. We shall now prove these three
results with considerably less effort using geometric arguments from chapter I, recalling that
the results cited from the finite reflection group carried over to the infinite case.

Proposition A. Let (W,S) be a Coxeter system, and let w ∈ W . Then l(sw) = l(w) ± 1 for
all s ∈ S.

Proof. This follows from the correspondence between minimal galleries and minimal expressions,
as well as step 2 of the proof of theorem I.1. Alternatively it is a special case of proposition
I.1(3 ). ■

Proposition B. Let (W,S) be a Coxeter system with length function l. W is finite if and only
if there is a unique longest element in W with respect to l.

Proof. The proof of step 5 of the proof of theorem I.1 shows that the walls crossed by a minimal
gallery from the fundamental chamber C are distinct. Since the length of such a gallery is equal
to the number of walls it crosses, which is equal to the length of the corresponding word, longest
elements of W correspond to chambers of X which are on the opposite side of every wall in
H from C. Since H is finite, such chambers exist. We claim that the chamber is unique. As
we have been doing, let C be the intersection of all of the “positive” half-spaces with respect
to H. Then by the description above, these chambers must lie in the intersection of all of the
“negative” half-spaces with respect to H. By definitions I.5 and I.7, this intersection consists
of exactly one chamber, hence uniqueness.

The reverse direction is clear, since a longest element implies a finite number of chambers
and walls, hence the group contains a finite number of reflections, and so the is itself finite. ■

Remark III.4. The diameter of X, as defined in definition I.11, is precisely the length of the
unique longest word, see example I.2 and 3 of example II.4.

Proposition C. A group W generated by a set S is a Coxeter group if and only if it satisfies
the deletion condition (D):

If w ∈W is represented by the word (t1, ..., td) with d > l(w), then there are indices
i < j such that w = t1 · · · t̂i · · · t̂j · · · td.

where t̂i indicates that that letter has been deleted from the expression.

Proof. For the forward implication, suppose (t1, ..., td) is a non-minimal expression for w, then
the gallery

Γ : C, t1C, t1t2C, ..., t1t2 · · · tdC

crosses a wall more than once, since if it only crossed each of the walls separating C and wC
once, it must cross a wall which does not separate them, and so must cross that wall again.
Then the argument which gave a contradiction in the proof of step 5 of the proof of theorem
I.1, shows that two letters can be deleted from the word.

We shall not provide a geometric proof of the other implication as we feel that the point has
been made, and it would require a slightly deeper analysis of X. Schematically however, it goes
as follows: if we are happy to take the proof that (D), (E), and (F) are equivalent as sufficiently
straightforward, we use (F) to characterise which posets are possible for X to correspond to a
geometric reflection group, and hence a Coxeter group; for details see [8, chapter III, section
4]. ■
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Figure III.2: Visualisation of the deletion condition using galleries. Part of a gallery (blue) is
shown, which crosses a wall (thick black line) twice. The loop of the gallery cut off by this wall
is reflected (red) and the new gallery stutters in two places (purple).

Remark III.5. Intuitively we can see what is going on in the proof of the deletion condition.
The non-minimal gallery defines a path which meanders through V , crossing a wall H twice. So
H cuts off a loop of this path. If we reflect this loop in the H, chambers are taken to chambers
(see paragraph 1 of section 1D), so we get another gallery. Since chambers which were adjacent
along H and distinct in the original gallery are mapped to the same chamber on just one side of
H in the new gallery, the new gallery stutters in two places, so we can shorten it by removing
two chambers which meet H. This is illustrated in figure III.2. We could imagine doing this
repeatedly for every wall a gallery crossed multiple times to eventually end up with a minimal
gallery. This is in fact the basis of the combinatorial solution to the word problem mentioned
in section III.2.

Many of the other combinatorial results which we proved in section II.3 can also be proved
using geometric arguments such as these. We leave it as an exercise to prove lemma II.5 in this
way, since the combinatorial proof was omitted.

We shall make brief mention of a lexical oddity which may have caught your attention. We
introduced two conditions on a combinatorial group, the exchange condition (E), and the strong
exchange condition (SE). As a reminder, they were as follows:

Let (t1, ..., td) be a minimal expression for w ∈W , and let s ∈ S. If l(sw) = l(w)−1,
then there is some index i such that sw = t1 · · · t̂i · · · tk.

and

Let (t1, ..., tk) be an expression for w, and let r ∈ R. If l(rw) < l(w), then there is
some index i such that rw = t1 · · · t̂i · · · tk.

It is clear from the statements that they are closely related, and indeed the second seems a
stronger statement than the first: the expression need not be minimal, and it works for any
reflection, not just the generators15. However, in the proof of proposition C, we proved that they
are equivalent. Why should this be the case? Again we can use geometry. The set of reflections
corresponds to the set of walls H. When we chose generators of our geometric reflection group,

15J. E. Humphreys meets in the middle, stating (E) without the minimality condition [17, section 1.7, remark].
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we chose the walls of a fixed chamber. But the choice of this chamber was essentially arbitrary,
and there is nothing special about one such subset of H over another. This means that many
results about the generators S can be generalised to all reflections R, for example lemmata II.4
and II.5, see also remark II.1. The reason the expression need not be minimal is given in the
preceding remark.

We shall finish this chapter by re-examining the observation made at the end of section
I.1. We noted that the poset X for a finite geometric reflection group corresponded to a
triangulation of the sphere in the vector space V . Can we see this in the construction of
the reflection representation? Theorem III.4 characterises finite irreducible Coxeter systems as
those for which the associated bilinear form B is positive-definite, in other words is an inner
product. B can be thought of as a symmetric matrix, which (by elementary linear algebra) can
be diagonalised by an orthogonal matrix. Moreover, since B is positive-definite, those diagonal
entries will be strictly positive. Matrices in orthogonal group O(n,B) therefore stabilise a family
of n–dimensional ellipsoids in V [19, p. 429]. Since ρ(W ) is a subgroup of O(n,B) (see proof
of lemma III.7), it also stabilises these ellipsoids. If you take any one of them and intersect
it with X, you will get a triangulation of that ellipsoid, which is itself homeomorphic to the
(n− 1)–sphere, so you get a triangulation of the sphere from X, just as we saw before.

Notes

1) When preparing this chapter, our main resources were [3], [6], [8], [9], [13], and [16]. [1]
and [17] were very useful for section 3B. The exposition throughout is our own.

2) Many introductions to Coxeter groups skip over the significance and subtlety of the Tits
cone in the infinite case, in particular that the action of W is not on the whole space
V or V ∗. Indeed this was a misconception we held when trying to build the complete
bridge between the first two chapters, which we only fixed in the process of writing out
the full justification. It is for this reason that we thought it vital it introduce the Tits
cone formally, and discuss the action of W on it in detail.

3) Most books we have seen devote only a sentence or so to the fact that the faithfulness
of ρ solves the word problem. We have not seen a solution phrased in the language of
chambers in any of our reading.

4) The geometric proofs of propositions A, B, and C are our own, so too is the statement
and proof of theorem III.6, in so far as we have not come across these in our reading.
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Chapter IV

The Coxeter and Davis Complex

In the last chapter we unified the discussions we had in the first two chapters by establishing an
equivalence between geometric and combinatorial reflection groups. In particular we saw how
powerful the language of chambers could be in proving combinatorial results. This equivalence
was achieved by studying the naturally arising representation of a Coxeter system on a particular
real vector space V . To use the language of chambers, we then had to consider the poset X
of cells in V which came from this representation. In this chapter we shall see how one can
construct X, but skip out the construction of the reflection representation. We shall in fact be
able to show that X is much more than a poset, it is a special kind of simplicial complex with
useful properties called the Coxeter complex. Coxeter complexes are vital in the construction
of what are called buildings, we shall introduce this application in section 1D.

After this we introduce another simplicial complex on which our Coxeter group W acts,
and which is related to the Coxeter complex; it is called the Davis complex. In some sense
it is an improvement on the Coxeter complex, in particular it admits a W–invariant piecewise
Euclidean metric, which we introduce. We assume a reasonable knowledge of abstract simplicial
complexes, flag complexes, and barycentric subdivision. We shall also need a certain degree of
comfort with chamber complexes; everything which we use we have detailed in appendix B. We
shall assume throughout this chapter that (W,S) is irreducible, unless stated otherwise.

IV.1 The Coxeter Complex

1A X as a Simplicial Complex

With the significance the poset X plays in understanding the algebraic structure of Coxeter
groups, and in particular the chambers of X, it will be worthwhile exploring these more deeply.
So far we have referred to X only as a poset ; as mentioned above however, it is in fact a
simplicial complex with empty simplex (see definition B.4). This should not be much of a
surprise in light of our results on the structures of chambers (theorems I.2 and I.3). In the case
of an infinite group acting essentially, the chambers are simplicies, and it follows immediately
that X is a simplicial complex. In the case that we have a finite group acting essentially, the
chambers are simplicial cones. We can get a simplicial complex from this by intersecting X
with an (n − 1)–sphere centred on the cone-point as discussed at the end of section I.1. The
cells of X are in one-to-one correspondence with the simplicies of this complex of dimension
one less, with the exception of the cone-point itself, however it is straightforward to recover X
from this simplicial complex by adding a single point disjoint from the complex and taking the
cone over the complex, so we lose no information. Moreover the notions of chambers, walls,
and galleries are unchanged, just as in the infinite case. Another way to achieve the same effect
is to identify the cone-point with the empty simplex, and view rays as points, sectors as edges
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and so on. This is in fact what we shall do. Throughout this section (until IV.2), whenever we
say simplicial complex, we mean simplicial complex with empty simplex.

Definition IV.1. Let (W,S) be a Coxeter system acting essentially on a vector space V , and
let X be the associated poset of cells. The Coxeter complex of (W,S), denoted X(W,S) = X,
is the simplicial complex obtained from X as described above.

Remark IV.1. It is difficult to draw a simplicial complex and show the empty simplex. On the
one hand we could draw it as a cone, where n–simplices are represented by the the positive
linear span of an n–simplex (i.e as a cone), and thus as an (n+ 1)–dimensional object; or else
omit to draw the empty simplex, and represent simplices as one would expect, and keep in
mind that there is a hidden part of the simplicial complex in the background. We have opted
for the latter. We recommend thinking of the empty simplex as a cone-point outside the space
in which the simplicial complex exists. This coincides with our experience with the reflection
representation, where the origin was the cone-point, but we could restrict the action of ρ∗(W )
to some co-dimension 1 hyper-surface, in which the Tits cone restricted to a simplicial complex.

Let us see this in the case of D4, which we looked at in example I.2. The picture is as
in figure IV.1. D4 acts as the symmetry group of the square, however in this example we
have constructed X as the boundary of an octagon, the connection is that the octagon is the
barycentric subdivision of the square (see appendix B.4). This is typically what we get, as we
shall see. In the first chapter we also saw the example of the dodecahedron (see example I.4),
it is not too surprising that the Coxeter complex in this case is the barycentric subdivision of
the tiling of the sphere by pentagons as shown in figure I.5b.

C = εCsC

s′ss′Css′ss′C
= s′ss′sC

s′Css′C

s′sCss′sC

(a) The poset X.

C = εCsC

s′ss′Css′ss′C
= s′ss′sC

s′Css′C

s′sCss′sC

(b) The simplicial complex X.

Figure IV.1: The poset X in the case of D4 is restricted to a simplicial complex.

We shall look more closely at the chambers of X, given the significant role they played in
previous chapters, in particular with respect to the definitions in appendices B.6–B.8.

Proposition IV.1. Let (W,S) be a Coxeter system, then the associated Coxeter complex X is
colourable.

Proof. Let C be the fundamental chamber in X, and colour its vertices using a set I. Since
W acts simply transitively on X (theorem I.1) every simplex A in X can be identified with a
unique facet of C. Colour the vertices of A the same as its image under this identification. It
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is clear that this defines a valid colouring of X. Formally it follows by a simple induction on
the length of the minimal gallery joining C to any other chamber. (Adapted from [8, chapter
I, appendix C, proposition]) ■

All of our applications of the poset X (which we now think of as a simplicial complex),
to the combinatorics of Coxeter systems used only ideas of adjacency and chambers, and by
extension galleries. The vertices and other lower–dimensional cells did not really play a role.
By using i-adjacency (definition B.17) arising from a colouring of X, we can show that we need
only consider the chamber system associated to X. X always satisfies the conditions of lemma
B.2, which guarantees this.

Our discussion in chapter I tells us that X is always thin, which is to say every chamber
has exactly two adjacent chambers with respect to a given wall (including itself). The following
result will also be useful to us.

Proposition IV.2. Let X be the Coxeter complex associated to some Coxeter system, and let
A be a simplex in X. Then if D and D′ are two chambers which have A as a facet, every
chamber in every minimal gallery connecting D and D′ has A as a facet. It follows since X is
a chamber complex, that lkA is also a chamber complex.

Proof. Wlog assume D is in the positive half-space of all of the walls in X. Let Γ : D =
D0, ..., Dd = D′ be such a minimal gallery. By proposition I.1 the walls H1, ...,Hd which Γ
crosses separate D and D′. For each i we have that A ⊆ D ⊆ H+

i , and A ⊆ D′ ⊆ H−
i , and

hence A ⊆ Hi. We shall prove the claim inductively: we know that D = D0 has A as a facet,
assume that so do D1, ..., Di−1. But then A ⊆ Di−1 ∩Hi = Di−1 ∩Di, and so A is a facet of
Di as required. [8, chapter 1, appendix D, proposition 2] ■

1B A Combinatorial Definition

As promised at the start of this chapter, we shall now give a way to construct X for a com-
binatorial reflection group without using the reflection representation. That is to say, given
nothing more that the combinatorial group presentation (or equivalently the Coxeter matrix or
diagram), we shall be able to construct an abstract simplicial complex which is isomorphic to
X as a poset, and which we shall therefore also call X. We recall from chapter II section 2C
the definition of a special subgroup:

Definition IV.2. Let (W,S) be a Coxeter system, and let T be a subset of S. We write WT

for the subgroup ⟨T ⟩ of W generated by T (i.e. the group generated by T with all the relations
of W which use only letters of T ). Such subgroups are called special subgroups, and then T
is called a special subset of S.

We further define:

Definition IV.3. If WT is a special subgroup of a Coxeter system (W,S), for any w ∈W , the
coset wWT of WT is called a special coset1.

The collection of special cosets of W form a poset under set inclusion. We shall however
consider them with the opposite ordering, that is we shall say that

wWT ≤ w′WT ′ ⇐⇒ wWT ⊇ w′WT ′

for any w,w′ ∈ W and T, T ′ ⊆ S. This is certainly a poset; we shall now verify that it is
isomorphic to the poset of cells of the simplicial complex X. We shall do this by constructing

1Not to be confused with parabolic subgroups, which are conjugates of special subgroups, and are often
mentioned in the literature.
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an isomorphism ϕC between the subcomplex X≤C of facets of a fundamental chamber C and
the special subgroups of W . Since W acts simple-transitively on the chambers of C, and hence
simply-transitively on the W–equivalent cells of X, this isomorphism will immediately extend
to a poset isomorphism ϕ from the special cosets to the whole of X.

We shall do this in two steps: first we shall show that the special subgroups are the poset of
cells of a simplicial complex, and then we shall show that that simplicial complex is isomorphic
to X≤C . Let S be our vertex set, then each subset T of S corresponds to a simplex of dimension
1 less than its cardinality. We shall therefore take as our simplicial complex the power set P(S)
of S. It is clear that WT ⊆WT ′ if and only if T ⊆ T ′, so taking the opposite orderings on both,
WT ≥ WT ′ if and only if T ≥ T ′. Since WT = WT ′ if and only if T = T ′, the correspondence
T 7→WT is a poset isomorphism between the cells of P(S) and the special subgroups of W .

Since C is a simplex (noting that a simplicial cone is now being thought of as a simplex by
identifying the cone-point with the empty simplex), its cells are the power set of its vertices, so
C and P(S) are isomorphic as simplicial complexes if they have the same number of vertices,
but we know this to be true by the way X was constructed. We want to be slightly more clever,
because we want W to act on the special subgroups in the same way as it acts on X so that
we can extend this isomorphism on X≤C to the whole of X. It is sufficient to define ϕC on the
vertices of X≤C . The vertices are exactly the relative interiors of the subsets of C which are
stabilised by all but one of the walls of C (the subset stabilised by all of the walls corresponds
to the empty simplex). In particular a vertex of C can be written

int

 ⋂
s∈S\{si}

Hs


for i = 1, ..., n. Hence there is a natural choice for ϕC on the vertices

ϕC

int
 ⋂

s∈S\{si}

Hs

 =W{si}

By characterising each facet of C by the special subgroup of W which stabilises it, this extends
to X≤C as

ϕC

(
int

(⋂
t∈T

Ht

))
=WT .

From this, we can define an action ofW on the special cosets ofW via w(w′WT ) = (ww′)WT ,
and use this to extend ϕC to ϕ by demanding that ϕ commutes with the action of W , that is,
define

ϕ

(
w.int

(⋂
t∈T

Ht

))
= w.ϕC

(
int

(⋂
t∈T

Ht

))
= wWT .

As mentioned above, the simple-transitivity of the W action means that this is well-defined.
The reason why we needed to choose the opposite ordering on the special cosets is now clear:
the dimension of the faces of C vary inversely to the number of walls of C which stabilise them.

To summarise what we have done, we shall give another way of looking at this construction.
Given a Coxeter system, compute its reflection representation on V (or V ∗), and let X be the
simplicial complex of cells in V (or V ∗) obtained by identifying the cone-point at the origin with
the empty simplex. We can label the facets of the fundamental chamber of X by the special
subgroup of W which stabilises them, and use the W action to extend this to a labelling of the
whole of X, in the same way that we initially labelled the chambers of X by the elements of
W . This labelling has the same poset structure as the poset of cells of X, and by considering
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the special subsets corresponding to the special subgroups, we can obtain a description of this
poset as a simplicial complex, where the vertex set of the fundamental chamber is exactly the
set S. This means that we can forget about the reflection representation, and V , and construct
X merely by calculating the special cosets of W . Moreover, the natural W action on X is
preserved in this new construction. There is no harm therefore in retaining the same notation
as before and defining:

Definition IV.4. The simplicial complex defined above, whose poset of cells is the set of special
cosets of (W,S), is the Coxeter complex2, denoted X(W,S) = X.

From our previous discussion, we know that X is a thin colourable chamber complex de-
termined up to isomorphism by its chamber system. This new construction gives a naturally
colouring of X by S as κ(wWS\{si}) = si, and so each simplex wWT has its vertices coloured by
the set S\T . We noted above that all colourings were essentially the same, however what makes
this choice nice is that the action of W is type-preserving (see definition B.16). Moreover, two
adjacent chambers D and D′ are s–adjacent in the sense of definition B.17 if and only if D = wC
and D′ = wsC. We shall call this colouring the canonical colouring of X, and henceforth κ
will refer to this colouring. This definition also coincides with our labelling of chambers, since
under ϕ, the chamber we were formerly calling wC has become wW∅ = w{ε} = {w}. We should
also note that the empty simplex in X satisfies ϕ[ ] =WS =W , i.e. the whole group corresponds
to the empty simplex, so we shall omit to draw it, in accordance with our discussion in remark
IV.1.

Example IV.1. We saw at the start of this section how to obtain the Coxeter complex for D4

from the geometric picture. We shall now do this by the combinatorial method. Recall that the
Coxeter presentation for D4 is

⟨s, s′ | s2 = s′2 = (ss′)4 = ε⟩

The special subgroups are {ε}, {ε, s}, {ε, s′}, and W . This last corresponds to the empty
simplex, so for the purposes of drawing X we shall ignore it. The second and third contain the
first as sets, so with the opposite ordering, they are the vertices of {ε} which is a 1–simplex,
and is the fundamental chamber, see figure IV.2.

{ε}
{ε, s} {ε, s′}

Figure IV.2: The fundamental chamber of X(D4, {s, s′}).

The special cosets of these are

{ε}, {s′}, {s′s}, {s′ss′}, {ss′ss′} = {s′ss′s}, {ss′s}, {ss′}, {s};

and

{ε, s′}, {s′, s′s}, {s′s, s′ss′}, {s′ss′, s′ss′s} = {s′ss′, ss′ss′},
{ss′ss′, ss′s}, {ss′s, ss′}, {ss′, s}, {s, ε}.

From this we get the complex X as shown in figure IV.3, which is the same as we got previously.

2There is no standard notation for the Coxeter complex. J. Tits [25] and K. Brown [8] use Σ, while M. Davis
[13] and P. Bahls [3] use this for the Davis complex. We have opted to follow [3] where X is used for the Coxeter
complex. It is as fitting a symbol as any other, as it is redolent of the conic structure of the geometric definition.
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W∅ = {ε}{s}

{s′ss′}
{ss′ss′}
= {s′ss′s}

{s′}{ss′}

{s′s}{ss′s}

Ws = {ε, s}

sWs′ = {s, ss′}

ss′Ws = {ss′, ss′s}

ss′sWs′ = {ss′s, ss′ss′}

s′ss′Ws = {s′ss′, s′ss′s}

s′sWs′ = {s′s, s′ss′}

s′Ws = {s′, s′s}

Ws′ = {ε, s′}

Figure IV.3: The combinatorial Coxeter complex X(D4, {s, s′}).

1C Properties of the Coxeter Complex

We have thus achieved our goal of constructing a simplicial complex on which W acts naturally,
while circumventing the reflection representation. This construction, although it looks a lot more
abstract and complicated, is far more practical to compute than via the reflection representation.
Either way however, it is clear that the dimension of X is #S− 1, so drawing it becomes tricky
even when there are three generators (for example in the finite case, we know thatX triangulates
S2, so X lives in R3). and so the only really practical examples to do explicitly as above are
the dihedral groups, and maybe A3, for which X is the barycentric subdivision of the boundary
of a 3–simplex (a tetrahedron).

We shall not stop here however. We shall prove some properties of Coxeter complexes, and
then go on to discuss their main application, which is to so-called buildings. We have noted that
the few finite examples which we have considered are barycentric subdivisions. In particular we
have seen that the Coxeter complexes of a couple of the symmetry groups of regular polytopes
are the barycentric subdivisions of the boundaries of those polytopes. The reason why is quite
simple: since they are regular, every vertex, edge, and face et cetera has a symmetry hyperplane
passing through the middle of it, so the symmetries halve up the polytope in every possible way,
which corresponds to taking the barycentric subdivision. Not every finite Coxeter system is the
symmetry group of a regular polytope (for example E6, E7, and E8 ), however in general we
can prove this slightly weaker result (weaker because every barycentric subdivision is a flag
complex).

Proposition IV.3. The Coxeter complex X associated to a finite Coxeter system is a flag
complex (see definition B.11).

Proof. We shall show that X satisfies statement (2) of proposition B.1, that every finite family
of pairwise joinable simplicies is joinable, which is equivalent to X being a flag complex. Since
X is finite, the set of walls H is also finite. Since each H ∈ H is of co-dimension 1, H cannot
strictly separate two joinable simplicies in X, so a finite family of pairwise joinable simplices
must lie in a closed half-space H∗ for each H. Then the intersection

⋂
H∈HH

∗ is a closed cell
in X which contains the whole family. In particular the interior of this intersection is an open
cell which is an upper bound for the whole family, and hence they are joinable. [8, chapter I,
appendix B, proposition 2] ■
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(a) tiling of the Poincaré disc by ideal triangles.

{ε}
{ε, a} {ε, b}

{ε, c}

Da,b
∞

Da,c
∞ Db,c

∞

(b) The fundamental chamber ofX correspond-
ing to the W .

Figure IV.4

One question we might ask is when X is a manifold. In the finite case, we know that X
triangulates the sphere, so it is always a manifold. However not every Coxeter complex is a
manifold, as seen in the following example.

Example IV.2. Consider the tiling of the hyperbolic plane by ideal triangles as shown in figure
IV.4a. The symmetry group is generated by reflections in the sides of the “central” triangle,
which are mutually parallel, hence

W = ⟨a, b, c | a2 = b2 = c2⟩ = △(∞,∞,∞).

The special subsets are ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, (and {a, b, c} which corresponds
to the empty simplex). The corresponding special subgroups are shown in figure IV.4b, which
shows the fundamental chamber. Dx,y

∞ is the infinite dihedral group generated by x and y.
The full complex X has a copy of this fundamental chamber for every ideal triangle in the

tiling, and moreover, they mirror the adjacency relations between these ideal triangles (note
that in the diagram, we have not drawn all of the infinite tiling up to the boundary, only a
finite number of iterations). It is clear that X in this case is not a manifold, and the problem

occurs at the “cusps”, in particular the vertex Da,b
∞ is a vertex of infinitely many chambers, so

X is not compact near that point.

There is however a very simple characterisation of when X is a manifold3.

Theorem IV.1. Let X be a Coxeter complex, then the following are equivalent:

1) X is a manifold,

2) X is locally finite, and

3) every proper special subgroup of W is finite.

Lemma IV.1. Let A be a simplex in X, let T = S\κ(A) be the subset of S such that A is
stabilised by Hs for all s ∈ T . Then lkA is isomorphic to X(WT , T ). In particular lkA is a
chamber complex.

3There is extremely rich theory of structures which are not quite manifolds, called orbifolds. They arise
naturally as the quotient of smooth manifolds by the action of hyperbolic Coxeter groups. These spaces have
corners or cusps analogous to the example above, and are vital to the modern theory of 3–manifolds. In particular
they are instrumental in the proof of Thurston’s Hyperbolisation Theorem, see [20] for details.
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Proof. Wlog assume that A is a facet of the fundamental chamber; then A is the special
subgroup WT as defined. lkA is isomorphic to the poset X≥A via B 7→ B ∧ A for B ∈ lkA,
hence lkA is isomorphic to the poset of special cosets of W which are contained in WT by set
inclusion (the opposite of the poset ordering). These are precisely the special cosets of the
Coxeter system (WT , T ), and hence lkA is isomorphic to X(WT , T ) as claimed. [8, chapter 3,
section 2, proposition] ■

Proof of theorem IV.1. We shall prove the contra-positive of (1) implies (2). Assume X is not
locally finite, so there is some vertex v which is a facet of infinitely many chambers. Take a
bounded closed set Y in X which contains an open neighbourhood around v and intersects only
with the chambers which have v as a facet. For each of these chambers D, take an open set
containing D so that there is at least one point in Y for each chamber which is contained in
only one of these open sets. These open sets form an open cover of the closed set Y , but there
is clearly no finite subcover, contradicting Heine-Borel, so Y is not compact, hence X is not
locally compact around v, and so not a manifold.

We shall take the same approach to prove (2) implies (3). Suppose there is a proper special
subgroup of W which is infinite, then it is the face of infinitely many chambers {w} in X, so X
is not locally finite.

Finally we prove that (3) implies (1) directly. Assume that all proper special subgroups
of W are finite. Take a point x ∈ X, and let A be the open simplex which contains it. If [v]
is a vertex of A, lk[v] contains neither [v] nor A. By lemma IV.1, lk[v] is isomorphic to the
Coxeter complex of a finite Coxeter system generated by n − 1 generators, where dimX = n,
so lk[v] ≃ Sn−1. The cone of lk[v] over [v] is a closed ball, with boundary lk[v]. Since x /∈ lk[v],
x is in the interior of this ball, which is an open neighbourhood homeomorphic to an open ball
in Rn, and hence X is a manifold. (Left as an exercise in [8, chapter III, section 2, corollary
3]) ■

1D Buildings

We motivated the definition of the Coxeter complex as a way of constructing a geometric object
(a simplicial complex) on which a combinatorially defined Coxeter system acted as a group of
symmetries, and in particular as an easy way of obtaining such an object without the rigmarole of
the reflection representation, or worse, its dual. By far and away however, the main applications
of Coxeter complexes is in the theory of buildings. Roughly put, these are highly symmetrical
simplicial complexes on which certain groups act as automorphism groups. In particular they
grew out of an attempt to systematically define incidence geometries relating to semi-simple
groups of Lie type. They were axiomatised by J. Tits, but the history of their development is
so long and convoluted, that it is not really possible to motivate the definition. More detailed
historical accounts may be found in [25, introduction] and [8, chapter 5, section 4].

Definition IV.5. Let ∆ be a simplicial complex, and a a set of subcomplexes of ∆. The pair
(∆, a) is a (thick) building, of which the elements of a are apartments, if the following hold

(B1) ∆ is thick (see definition B.14),

(B2) the elements of a are thin chamber complexes,

(B3) any two simplices of ∆ are contained in a common apartment, and

(B4) if A and A′ are two simplices of ∆, both contained in each of the apartments χ and χ′ of
∆, then there is an isomorphism of χ onto χ′ fixing A and A′.

If the pair (∆, a) satisfies (B2)–(B4), it is called a weak building.
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Taking A and A′ to be the empty simplex in (B4) we can immediately conclude that every
apartment is isomorphic. By (B3), the apartments cover ∆, so all maximal simplicies have the
same dimension. Since any two chambers are contained in a common apartment, which is a
chamber complex by (B2), they can be connected by a gallery, and so ∆ is itself a chamber
complex, and it is necessarily connected. The nomenclature surrounding buildings is attributed
to N. Bourbaki by J. Tits. Think of chambers as rooms, apartments are collections of rooms
connected by corridors (galleries), and buildings are blocks of apartments. It is clear that if X
is a Coxeter complex, then the pair (X, {X}) is a weak building.

Example IV.3. Let X be the Coxeter complex of D∞. X “triangulates” R, and can be thought
of as consisting of the vertices Z, with 1–simplicies the intervals (n, n + 1) (see figure III.1, X
is the intersection of E with the Tits cone). Let ∆ be a connected infinite tree in which every
vertex has valence ≥ 3, and let a consist of all embeddings of X into ∆. We claim that (∆, a)
is a building.

That ∆ is thick is immediate from the condition on the valencies. Since each apartment is
isomorphic to X, a Coxeter complex, they are thin chamber complexes. These prove (B1) and
(B2). The apartments can be thought of as all infinite paths through ∆. Since ∆ is connected,
any two simplices are joined by a path, and hence are contained in the same apartment (this
establishes (B3)). Moreover, the subset of the path which stretches between them is unique,
because if not we could use two different paths to create a cycle, contradicting the assumption
that ∆ is a tree. This gives a sense of distance between two simplices in terms of the number
of edges (chambers) which lie between them.

We can now show that (B4) is satisfied. Take two simplices A and A′, and let χ and χ′ be
two apartments which contain both. By the observations above, they must agree between A
and A′, so the isomorphism between them restricted to this section is the identity. We extend
this to an isomorphism to the rest of χ and χ′ in analogous ways. Take the part of χ “beyond”
A, then map the unique vertex a distance n from A in χ to the unique vertex a distance n
beyond A in χ′. This defines a chamber map ϕ : χ 7→ χ′ defined on the whole of χ, which is the
identity on A and A′, and which is an isomorphism of simplicial complexes, as required. This
is illustrated in figure IV.5.

If we weaken the condition on the valencies to being ≥ 2, then we have a weak building.

Figure IV.5: Part of an infinite tree satisfying the thick building axioms. Two apartments
are drawn in red and blue, which coincide along a short branch (purple). It is clear how the
isomorphism between them spreads out from this shared section.

Heuristically (B4) says that two “nearby” apartments can be identified with each other
without moving then too much; one could imagine collapsing them into one apartment by
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pressing them together: taking two branches in the previous example and sticking them together.
This might in turn bring other apartments nearby, and one could continue the process until you
were left with just a single apartment. That is exactly what this next result says.

Proposition IV.4. Let (∆, a) be a weak building, then every apartment χ is a retract of ∆.

Proof. We shall construct a retraction of ∆ onto χ analogous to the way described above. Let
C be a chamber of χ. Assuming ∆ ̸= χ (otherwise we are done), (B2) guarantees the existence
of another apartment containing C, call it χ′. Then there is an isomorphism ϕχ′,χ : χ′ 7→ χ
which fixes C by (B4) (using the empty simplex as the other common simplex), and moreover it
is unique. Indeed, since it fixes C, it fixes all of the vertices of C, and so the faces of C. Let C ′

be a chamber adjacent to C in χ′, then the common face is fixed by ϕχ′,χ, and so all but one of
the vertices of C ′ are fixed. The image the remaining vertex is now uniquely determined by the
fact that ϕχ′,χ is a bijection between the chambers of χ and χ′. Continuing in this way we see
that ϕχ′,χ is uniquely determined along all non-stuttering galleries stretching from C in χ′, and
since every chamber is connected to every other chamber by a gallery in a chamber complex,
ϕχ′,χ is uniquely determined on the whole of χ′, as required.

Suppose χ′′ is another apartment which contains C, then by uniqueness, ϕχ′χ and ϕχ′′,χ

agree on χ′ ∩ χ′′ (we could write ϕχ′′χ = ϕχ′,χ ◦ ψ, where ψ : χ′′ 7→ χ′ is an isomorphism which
fixes χ′ ∩ χ′′; the existence of which follows easily from (B4)).

Finally we claim that we can string together a series of these isomorphisms to get a retraction
ρ : ∆ 7→ χ. Suppose χ′ and χ have a chamber in common, then we can use ϕχ′,χ as constructed
above. If not, then let C ′ be a chamber in χ′, and by (B3) there is an apartment χ′′ containing
both C and C ′. As above construct ϕχ′,χ′′ and ϕχ′′,χ which fix C ′ and C respectively and are
unique, and define ϕχ′,χ = ϕχ′′,χ ◦ ϕχ′,χ′′ . Then explicitly we have that if A ∈ χ′

ρ(A) = ϕχ′,χ(A)

which is well-defined by uniqueness. [8, chapter IV, section 3, proposition 1] ■

Corollary IV.1. The combinatorial distance function on a building (∆, a) coincides with the
combinatorial distance function on each of its apartments. In particular the diameter of ∆ is
equal to the diameter of each of its apartments (see definitions I.10 and I.11).

Proof. Let D and D′ be two chambers in ∆, and let χ be an apartment which contains both
(q.v. (B3)). Clearly dχ(D,D

′) ≤ d∆(D,D
′). Suppose the inequality were strict, then since ρ as

in the proposition is a chamber map, it takes galleries to galleries, and the image of a minimal
gallery in ∆ which realises d∆(D,D

′), would realise this same distance in χ, contradicting the
definition of dχ(D,D

′).
For the second claim, every apartment is isomorphic to every other, so the statement makes

sense. We know that diam(χ) ≤ diam(∆) for all χ ∈ a. If it were strict, then there would be
chambers D and D′ both contained in an apartment χ′, but with d∆(D,D

′) = dχ′(D,D′) >
diam(χ′) a contradiction. [8, chapter IV, section 3, corollary 1] ■

The application of Coxeter complexes to buildings goes far beyond that fact that they are
(very basic) examples of them; they are inextricably linked, as shown by the following theorem
due to Tits, the proof of which relies on the above proposition and corollary.

Theorem IV.2. Let (∆, a) be a thick building, then its apartments are Coxeter complexes. [25,
theorem 3.7]

Sketch of proof. The proof is very long and technical, but it may broadly be broken down into
two steps.
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Step 1: Characterise Coxeter complexes by foldings.
Formally a folding of a chamber complex ∆ is a chamber map ϕ : ∆ 7→ ∆ which is a

retraction onto its image ∆′ ⊆ ∆, such that the pre-image of every chamber C ′ in ∆′ is {C,C ′}
where C ∈ ∆\∆′. Heuristically a folding is exactly what it sounds like: one takes a wall, and
maps the half of ∆ on one side of the wall on to the half of ∆, ∆′, on the other. We only had a
well-defined sense of a “wall” in the case of a Coxeter complex, and not for a general chamber
complex (for example, the subdivision of a pentagon into five 2–simplices is a chamber complex,
but it has no walls which divide it in two). We claim that the existence of foldings characterises
Coxeter complexes in the following way:

A thin chamber complex is a Coxeter complex if and only if for every pair of adjacent
chambers, there is a folding which maps one onto the other, which is left fixed.

If we have a Coxeter complex associated to (W,S), choose one of the chambers to be the
fundamental chamber C, and let Hs be the wall separating it from the other chamber C ′, then
we define ϕ on the chambers (since every Coxeter complex is determined by its chamber system,
we can do this) by

ϕ(D) =

{
D if D ∈ H+

s ;

sD if D ∈ H−
s .

which maps C to C, and C ′ to sC ′ = C as required. This is made rigorous using the folding
condition (F), which is why it has that name [8, chapter II, section 3B, proposition].

The other direction is more tricky. We suppose such foldings exist, and construct a set
H × {±1} and a group W which acts on this set based on the foldings. Thus we show that
W satisfies condition (A), and is a Coxeter group, and moreover the Coxeter complex of this
group is exactly the thin chamber complex on which W was made to act, which is shown by a
careful analysis of the stabilisers of each of the facets. For details see [8, chapter II, section 3B,
and chapter IV section 4].

Step 2: Show that the apartments of a building have the sufficient number of foldings to
satisfy the criterion above.

In the proof of proposition IV.4, given a chamber C in an apartment χ we constructed what
might be called the canonical retraction of ∆ to χ: ρχ,C . We can use this to construct a folding.
Let C and C ′ be two distinct adjacent chambers in ∆, with common apartment χ. Since ∆ is
thick, the common face of C and C ′ is also a face of a third distinct chamber C ′′. Let χ′ be
an apartment containing C and C ′′. We then define ϕ : χ 7→ χ as the restriction to χ of the
retraction ρχ,C′ ◦ ρχ′,C : ∆ 7→ χ, which is illustrated in figure IV.6. C is fixed by both of these
retractions, so ϕ(C) = C, what about C ′? Since χ′ is thin (by (B2)), C ′ /∈ χ′; ρχ′,C must map
it to C or C ′′, and since on χ it behaves as ϕχ,χ′ which fixes C, and since it is an isomorphism,
ρχ′,C(C

′) = C ′′. By the same argument, ρχ,C′(C ′′) = C or C ′, but as it fixes C ′, ρχ,C′(C ′′) must
be C, hence ϕ(C ′) = C as required.

Now one uses corollary IV.1 which says that ϕ preserves distances to extrapolate its be-
haviour on the rest of χ, and in particular, that it satisfies the definition of a folding. In this
way we have constructed a folding for every pair of adjacent chambers in χ, and so by step 1,
it is a Coxeter complex. Since all apartments are isomorphic, they are all Coxeter complexes.
For details, see [8, chapter IV, section 7]. ■

This remarkable result means that with our work on Coxeter complexes, we already know a
lot about the structure of buildings. Since every apartment is a Coxeter complex corresponding
to the same Coxeter system (W,S), we can say that ∆ is of type (W,S), and associate to
it a Coxeter matrix and diagram. We noted in the last section that Coxeter complexes are
colourable; this is a property inherited by buildings.
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C

C ′

C ′′

χ

χ′

ϕ

ρχ′,C

ρχ,C′

Figure IV.6: The three chambers C, C ′, and C ′′ in the apartments χ and χ′. The action of
ρχ,C′ and ρχ′,C are indicated by arrows.

Proposition IV.5. Any building (∆, a) is colourable, and the isomorphisms in (B4) can be
chosen to be type-preserving.

Proof. Fix a chamber C and colour its vertices. By (B3) C is in an apartment χ, which is
a Coxeter complex, and hence we can extend this to a colouring, κ, of the whole of χ by
proposition IV.1. Now if χ′ is another apartment containing C, the colouring κ′ of χ′ obtained
in the same way agrees on χ ∩ χ′, since it is uniquely determined by the colouring of C, and
they are isomorphic. Therefore the colourings of all the apartments containing C match up to
give a colouring of the union of these apartments, which, by (B3), is the whole of ∆.

Now suppose χ and χ′ share a chamber and a simplex, then the isomorphism ϕ in (B4) fixes
this chamber so is automatically type-preserving. If we have two apartments χ and χ′ which
share only two simplicies A and B, we can choose chambers C ∈ χ and D ∈ χ′ which have A and
B as faces respectively. Let χ′′ be an apartment containing C and D. The isomorphisms χ 7→ χ′′

and χ′′ 7→ χ′ are type-preserving by the first case, and their composition is a type-preserving
isomorphism χ 7→ χ′, as required. ■

The theory of buildings is extremely rich and deep, and what we have mentioned here does
not scratch the surface. They are closely related to classical incidence geometries, indeed in [8,
chapter IV, section 2], K. Brown considers low rank cases of buildings of dihedral type (their
apartments are the Coxeter complexes of dihedral groups), and the corresponding buildings are
the flag complexes of a 2–dimensional incidence geometry, the projective plane, polar geometry
et cetera. They can also be related to abstract algebra via so-called Tits systems, or BN-pairs,
which are systems of subgroups of a given group G satisfying a set of axioms. These readily give
examples of buildings, and again are closely related to Coxeter systems. They are discussed in
[1], [6], and [8].
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IV.2 The Davis Complex

The aim of this section is to construct the Davis complex, and look at some of its properties. The
purpose of the Davis complex is to associate to an combinatorial Coxeter system, a geometric
object on which the group acts naturally as a group of symmetries. In particular, the Davis
complex can be constructed just from the group presentation. This may sound very familiar
from the opening of the previous section, where we justified the study of Coxeter complexes.
The Davis complex is a different, but related construction to the Coxeter complex, due to M.
Davis, but studied extensively by G. Moussong (and others), so some sources refer to it as the
Moussong complex. In the introduction to his book [13], M. Davis notes two drawbacks to the
otherwise extremely useful Coxeter complex: (a) that the fundamental domain for the action of
W on X, the fundamental chamber C, is not compact, and (b) there is no natural W–invariant
metric on X.

The Davis complex is a simplicial complex (without empty simplex) on whichW acts “prop-
erly” as a group of poset automorphisms generated by reflections; moreover, the fundamental
domain for the group action is compact, and the natural piecewise Euclidean metric is W–
invariant (W acts by isometries) and is so-called CAT(0). The Davis complex also embeds in a
natural way into I, the interior of the Tits cone of (W,S) (see (III.1) on page 43). There are also
relations to buildings. Throughout the rest of this chapter, when we say simplicial complex, we
mean simplicial complex without empty simplex.

2A The Nerve of a Coxeter System

Recall that for the combinatorial definition of the Coxeter complex, we considered special sub-
groups and special cosets. For the Davis complex we are slightly more discriminating.

Definition IV.6. Given a Coxeter system (W,S), we say T ⊆ S is spherical4 if the subgroup
generated by T , WT , is finite; if this is the case WT is called a spherical subgroup. We know
then that (WT , T ) is also a Coxeter system. Denote by S = S(W,S) the set of a spherical
subsets of S, this is clearly a poset (see appendix B.1) ordered by inclusion. Write S(k) for the
set of of spherical subsets of cardinality k.

We have already considered these subgroups when we defined the interior of the Tits’ cone
(see (III.1)). Since each generator in a Coxeter system is an involution, Ws for any s ∈ S is
the finite group of order 2, so S ⊆ S. Moreover, if T generates a finite Coxeter group, so too
does any subset of T , the two conditions for being an abstract simplicial complex are satisfied
so long as we exclude the empty set, hence S>∅ is an abstract simplicial complex.

Definition IV.7. The nerve of a Coxeter system (W,S) is the abstract simplicial complex
S>∅ which we denote by L = L(W,S).

It follows that S(k) is the set of (k − 1)–simplicies in L, so
k⋃

i=1
S(i) is the (k − 1)-skeleton of L.

Some simple examples illustrate this definition.

Example IV.4.

1) If (W,S) is finite to begin with, we have S = P(S), the power set of S, and so L is the
full simplex on S.

2) Take W = D∞ = ⟨a, b|a2 = b2 = ε⟩, then S = {a, b}, and S = {∅, {a}, {b}}, so L consists
of just two points, i.e. the 0-sphere S0.

4This name comes from the fact that finite Coxeter systems are characterised by the fact that they “act on
the sphere”, see last paragraph of chapter III.
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3) If (W,S) is reducible, such that (W,S) = (W1 ×W2, S1 ⊔ S2). It is easy to check that
T = T1 ⊔ T2 is spherical in (W,S) if and only if T1 and T2 are spherical in (W1, S1) and
(W2, S2) respectively, hence

S(W,S) = S(W1, S1)× S(W2, S2)

and
L(W,S) = L(W1, S1) ∨ L(W2, S2)

where ∨ is the join, see definition B.7.
Taken from [13, examples 7.1.2, 3, and 5].

If we have a Coxeter system (W,S), we have seen that we can express it using a Coxeter
diagram ν . By convention we omitted edges labelled 2 and included edges labelled ∞ because
this gave us the result that a Coxeter system was irreducible if and only if its Coxeter diagram
was connected (see lemma II.1). If instead we define the graph ν̃ to be as ν , but where the
edges with label 2 were included, and the edges labelled ∞ were excluded, then it is clear that
the 1–skeleton of L(W,S) is precisely ν̃ [13, example 7.1.6].

2B The Davis Complex and the Fundamental Chamber

Definition IV.8. A spherical coset is a coset of a spherical subgroup in W , i.e. wWT for
some w ∈W , T ⊆ S, such that #WT <∞. The set of all spherical cosets in W is written

WS =
⋃
T∈S

W/WT

which is a poset under set inclusion.

There is a well-defined projection WS ↠ S : wWT 7→ T and a natural inclusion map S ↪→
WS : T 7→ WT . W acts naturally on WS via w.(w′WT ) = (ww′)WT . S and WS are both
posets ordered by inclusion. Every abstract simplicial complex is a poset ordered by inclusion,
but the reverse does not hold. There is a very simple way of obtaining an abstract simplicial
complex from an arbitrary poset, using what are called flags, see appendix B.5.

Now, going back to S and WS, we denote the geometric realisation5 of the poset S to be
|S| = K = K(W,S) (note the differences between this and the nerve L which is S>∅), and the
geometric realisation of the poset WS to be |WS| = Σ = Σ(W,S).

Definition IV.9. Σ(W,S) is the Davis complex of (W,S), and K(W,S) is its fundamental
chamber6.

The projection WS ↠ S induces a simplicial projection π : Σ ↠ K, and the inclusion
S ↪→ WS induces an inclusion i : K ↪→ Σ. The next result says that if we identify K with its
image in Σ, every simplex in Σ is a translate of a simplex in K, under the action of W on Σ,
which justifies calling K the fundamental chamber.

5There is a easy way to go between an abstract simplicial complex (in this case the flag complex), and its
geometric realisation, and so one does not need to be too worried about which one we are dealing with in general.
Indeed, in the last section our definition was of an abstract simplicial complex, but we happily talked about its
topological closure, meaning the closure of the geometric realisation, without comment. M. Davis gives these
definitions as geometric realisations specifically, and the reason is that he will introduce a Euclidean metric on
Σ, which only makes sense for the geometric realisation.

6M. Davis [13, p. 126] seems content to merely refer to this complex as K, although earlier (p. 64) he defines
the fundamental chamber in the much more general context of a space, called U. P. Bahls [3, p. 25] makes the
direct link and refers to K as the fundamental chamber explicitly.
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Lemma IV.2. Every facet of Σ is a translate of a facet of K under the action of W .

Proof. We can reinterpret proposition I.1(2) as saying that for every element w ∈W , there is a
well-defined subset S(w) ⊆ S such that every minimal expression (t1, ..., td) contains only the
letters of S(w); it now easily follows that if T ⊆ S, thenWT is the subgroup ofW containing all
elements such that S(w) ⊆ T [13, corollary 4.1.2]. Let T and T ′ be subsets of S, and w,w′ ∈W
then from the above observation, wWT ⊂ w′WT ′ if and only if T ⊂ T ′ and wWT ′ = w′WT ′ .

If w0WT0 ⊂ · · · ⊂ wkWTk
, then T0 ⊂ · · · ⊂ Tk and wiWTi = w0WTi for all i. That is, the

facet which is the flag [w0WT0 , ..., wkWTk
] is the w0 translate of the facet [WT0 , ...,WTk

] in K.
[13, lemma 7.2.3] ■

We shall now give an explicit example in detail.

Example IV.5. We have seen a lot of the example of D4, so for some variety, consider
(W,S) = (D3, {s1, s2}), the Coxeter system for the dihedral group of order 6, which we know
acts as the symmetry group of the regular triangle in the plane. It has presentation of Coxeter
type A2: ⟨s1, s2|s21 = s22 = (s1s2)

3 = ε⟩. Since this is a finite Coxeter system

S = P(S) = {∅, {s1}, {s2}, {s1, s2}}

so the nerve of (W,S) is L = {[s1], [s2], [s1, s2]}, which can be drawn as in figure IV.7.

[s1, s2]
[s1] [s2]

Figure IV.7: The geometric realisation of the nerve as a simplicial complex Geom(S>∅).

We can consider the geometric realisation of S>∅ as a poset by calculating its flag complex,
which has n–simplicies:

0 : [{s1}], [{s2}], [{s1, s2}]
1 : [{s1}, {s1, s2}], [{s2}, {s1, s2}]

where an n–simplex is a totally ordered subset of L by inclusion, written as an (n+1)–tuple in
square brackets starting with the minimal element. The geometric realisation of this is shown
in figure IV.8.

{s1, s2}

{s1}

{s2}

Figure IV.8: The geometric realisation of the nerve of D3 as a poset |S>∅|.

Next Flag(S) consists of simplicies:
0 : [∅], [{s1}], [{s2}], [{s1, s2}]
1 : [∅, {s1}], [∅, {s2}], [∅, {s1, s2}], [{s1}, {s1, s2}], [{s2}, {s1, s2}]
2 : [∅, {s1}, {s1, s2}], [∅, {s2}, {s1, s2}]

the geometric realisation of which is shown in figure IV.9.
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{s1, s2}

{s1}

{s2}

∅

= K
i : T 7→WT7−→

W

{ε, s1}

{ε, s2}

{ε}

Figure IV.9: The complex K of D3, showing the geometric realisation of the nerve as a poset.
The image of K under the inclusion map into Σ is also shown.

Notice that the geometric realisation of the nerve is a subcomplex of K, and in fact K is the
cone of |L|. Finally, we have that

WS =
⋃
T⊆S

W/WT

=W/W∅ ∪W/W{s1} ∪W/W{s2} ∪W/W{s1,s2}

= {{ε}, {s1}, {s2}, {s1s2}, {s2s1}, {s1s2s1}}∪
{{ε, s1}, {s2, s2s1}, {s1s2, s1s2s1}}∪
{{ε, s2}, {s1, s1s2}, {s2s1, s1s2s1}∪
{{ε, s1, s2, s1s2, s2s1, s1s2s1}}

To write out every n–simplex in Flag(WS) would be the act of a very patient person, we instead
summarise that information simply by giving the geometric realisation in figure IV.10.

This has been drawn suggestively as a hexagon, because Σ is in fact the barycentric sub-
division of the hexagon; however W acts on this by the symmetries of the triangle, so the W
action is better shown by drawing Σ as in figure IV.11. Note how K, the fundamental chamber,
sits inside Σ.

How does this relate to X(W,S)? Extrapolating from our example of D4, the Coxeter
complex of D3 is the barycentric subdivision of the boundary of a triangle. Now we have
constructed Σ which is the cone over the barycentric subdivision of the barycentric subdivision
of the boundary of a triangle; we might write Σ = Cone(BsX) = Cone(Bs2∆triangle), see
definitions B.8 and B.9.

2C Properties of the Davis Complex

How does Σ relate to X? If we assume that W is finite, then the spherical subsets S are all
the special subsets of S, and the spherical cosets WS coincide exactly with the special cosets.
In the construction of X, we first considered the fundamental chamber, and showed that this
corresponded to the special subgroups, and was in fact isomorphic to the power set P(S). If we
exclude the empty simplex, and note that a power set as a poset is isomorphic to itself with
the opposite ordering, then we get exactly the nerve L of the Coxeter system, see figure IV.7.
If we take the geometric realisation of L as a poset, |L| = |S>∅|, since it is a poset of cells, we
get the barycentric subdivision of L (see remark B.2). Looking at the definition of K, it is |S|,
so the only vertex added to |L| is the empty simplex, which is a subset of all of the vertices
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W

{ε, s1}

{ε, s2}

{ε}

{s2, s1s2}

{s1s2, s2s1s2}
{s1s2}

{s2s1, s1s2s1}

{s1, s2s1}

{s2s1}{s2}

{s1}

{s2s1s2} = {s1s2s1}

Figure IV.10: The Davis complex Σ of the groupD3, showing the image ofK under the inclusion
map.

Figure IV.11: The Davis complex of D3 drawn so as to illustrate the action of D3 as the
symmetry group of the triangle.

of L, so when we take the flag complex, we get the cone over |L|, that is K = Cone(|L|), so
the fundamental chamber of Σ is the cone over the barycentric subdivision of the fundamental
chamber of X. W acts on the fundamental chamber of X to get the whole of X, and the action
of W on the spherical cosets is defined in the same way, so Σ can be obtained by acting W on
K. The barycentre of L is S, which gets mapped to W under the inclusion of K into Σ, and
this vertex is clearly fixed by the action of W , so Σ is a cone over this point. It follows by a
careful analysis7 of the definitions that in general this gives us that Σ = Cone(BsX), as was
the case in the previous example.

If W is infinite, one must first remove the part of X corresponding to the infinite special
subsets, and then we can play the same game to get Σ. In the particular case that W is infinite,
and X is a manifold, the only special subset which is not spherical is S itself (see theorem IV.1),
and so only the cone vertex W and all the simplices which have W as a facet, are lost, and
hence Σ = BsX. From these observations we get the following results.

7Note that the cone over a simplex is a simplex of dimension one higher. With this it can be shown that it
is generally the case that K is a cone over both ∅ and S as in the example, and that removing either of these
cone-points leaves isomorphic complexes. So deleting the cone-point S (which is equivalent to deleting the cone-
point W in Σ), leaves behind a complex which is isomorphic to the barycentric subdivision of the fundamental
chamber of X.
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Proposition IV.6. With notation as above:

1) K is contractible. [13, lemma 7.2.5(i)]

2) If W is finite and #S = n, then Σ is contractible, moreover Σ ≈ Dn, the closed n–ball.

3) If W is infinite and X is a manifold, then Σ is a manifold.

Proof. (1) K is a cone, and hence contractible. (2) If W is finite, Σ is a cone. Moreover
X ≈ BsX ≈ Sn−1, and so Σ ≈ Cone(Sn−1) ≈ Dn. (3) If X is a manifold then Σ = BsX which
is a manifold. ■

At the start of this chapter, we simplified the calculation of X by giving a combinatorial
definition. We have given a combinatorial definition of Σ as a flag complex, but the number
of steps required to calculate this from W is exponentially greater than the number of steps
required to calculate X, since we are dealing with power sets. We shall now look at a quick
geometric way to obtain Σ fromX (or more precisely from its geometric realisation as a simplicial
complex) if W is finite using Coxeter polytopes.

Definition IV.10. Let (W,S) be a finite Coxeter system, and consider its reflection repre-
sentation on a space V . Let x be a point strictly inside the fundamental chamber, then the
Coxeter polytope is the convex hull W–orbit of x in V . We denote it CW .

Even more loosely we could just take one point chosen (with common sense) from the interior
of each chamber in V , and then CW is the convex hull of of these points. In the case of D3,
look at P in figure I.2, there we see that the convex hull of its W–orbit is a hexagon. Since W
is finite, CW will be homeomorphic to the sphere in V on which W naturally acts. In particular
it is easy to see that X triangulates the sphere, and CW is the dual8 of this triangulation. In
the case of W = △(2, 3, 5), the symmetry group of the dodecahedron, X is shown in figure
I.5b, and CW is the dual to this, which is a truncated icosidodecahedron, a polyhedron with
faces which are regular decagons, hexagons, and squares9. We can then identify Σ with the
barycentric subdivision of CW , indeed this follows by establishing the required relation between
Cone(BsX) and Bs(Hull(X∗)), where X∗ is the dual of X, and Hull(·) is the convex hull.

In the case that the W is infinite, the poset (WS)≤wWT
is isomorphic to WT (ST ), which is

the face corresponding to S≤wWT
. This is isomorphic to the barycentric subdivision of CWWT ,

so if we replace this subdivision with the Coxeter polytope, we shall get a coarser cell structure
on Σ which has some very nice properties.

1) The vertex set (0–skeleton) of Σ is W .

2) The 1–skeleton of Σ is the Cayley graph of (W,S), see definition B.19.

3) The 2–skeleton of Σ is the Cayley 2–complex of (W,S).

4) Each cell is a Coxeter polytope.

5) The link of every vertex is isomorphic to L(W,S).

6) The poset of cells of Σ is WS.

The first and fourth are tautological, we shall leave the rest as exercises, they just come
from working through the definitions [13, proposition 7.3.4]. With these observations in hand
we can improve on the preliminary results above.

8The dual of a polyhedron is obtained by replacing each face with a vertex at its centre, joining two of
these vertices if the corresponding faces shared an edge, and then each of the original vertices becomes the
“corresponding” face of the new polyhedron. The process is analogous in other dimensions.

9Identify each of these in figure I.5b; how are they related to the dihedral angles of the triangles?
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Proposition IV.7. Σ is simply-connected.

Proof. A loop in Σ is homeomorphic to a closed loop in its 2-skeleton, which is a Cayley 2–
complex, and hence simply connected by proposition B.2. [13, lemma 7.3.5] ■

Proposition IV.8. Suppose L triangulates Sn−1, then Σ is an n-manifold.

Proof. This follows from the proof of theorem IV.1 and property 5. [13, proposition 7.3.7] ■

Example IV.6. In example IV.2 we saw the tiling of the hyperbolic plane by ideal triangles,
and in particular we saw that its Coxeter complex of (W,S) was not a manifold. What does
its Davis complex look like? S = {a, b, c}, but S = {∅, {a}, {b}, {c}}, and so its nerve L = S>∅
consists of 3 distinct points. Neither of our results giving sufficient conditions for Σ to be a
manifold are satisfied. We can calculate Σ explicitly however. We know that K = Cone(|L|) =
Cone(Geom(L)), since Flag(L) = L in this case. K is the fundamental chamber, so we can
get Σ by acting on it by W . What we get is shown in figure IV.12. In figure IV.12c, we have
shown the cellulation of Σ by Coxeter polytopes, instead of the full complex (which is merely
the barycentric subdivision of that shown). It is clear that this is not a manifold; however, if
drawn all the way up to the boundary of the hyperbolic plane, we would get the infinite trivalent
tree. Looking back at example IV.3, we saw that Σ is in fact a building, with apartments the
embeddings of X(D∞, {s, s′}) into Σ.

(a) The nerve of (W,S).
(b) The fundamental chamber
of (W,S).

(c) The Davis complex of
(W,S), superimposed on the
hyperbolic plane.

Figure IV.12

At the start of this section we identified two shortcomings of the Coxeter complex as a
space on which to make W act. The first was that the fundamental domain was not compact
in general, and we have seen in the construction of K, and with the spherical condition in
the definition of Σ, that the W action on the Davis complex admits a compact fundamental
domain. The second was that there was no natural W–invariant metric on X. Σ fixes this. If
we consider the cellulation of Σ by Coxeter polytopes discussed above, we can embed each in
a Euclidean vector space of the same dimension and thus give each a Euclidean metric. This
extends to a piecewise Euclidean metric in the whole of Σ in the obvious way (that this is
well-defined needs to be proved, but it turns out to be the case). What is more, it was proved
by G. Moussong that with this metric, Σ is CAT(0), which means that it is “non-positively
curved”. The formal definition involves taking a small geodesic triangle and comparing it to a
small triangle in Euclidean space, and showing that the original triangle is “thinner”, which is to
say looks more like a hyperbolic triangle than the Euclidean triangle. It measures the curvature
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of a geodesic space in some sense10. The proof is quite long, and uses a lot of Riemannian
geometry beyond the scope of this report11.

Why is this result so astonishing? It allows us to say that W acts by isometries of Σ, but
the highly non-trivial fact is that those isometries are Euclidean. In section 3B we discussed
briefly three classes of Coxeter group, what we might call spherical, Euclidean, and (compact)
hyperbolic (finite, affine, and hyperbolic), and saw ways in which to make such groups act on
those spaces of constant curvature using the reflection representation. In particular we saw
that such groups are characterised by the signature of the associated bilinear form B: (n, 0, 0),
(n−1, 1, 0), and (n−1, 0, 1) respectively. It is clear from this, given the almost complete freedom
we have in writing down a Coxeter matrix, that the vast majority of Coxeter groups are not
of any of these types. That Σ with its piecewise Euclidean metric can be constructed for any
Coxeter system is the miracle of this result. This shows why its not surprising that X does not
share this property.

Notes

1) The two main works cited in this chapter are [8] and [13]. [25] was also consulted, however
the material presented there is written in a style which is inaccessible to someone who
has not seen Coxeter complexes before, so where possible we have cited and followed the
proofs given by K. Brown.

2) For the discussion leading up to definition IV.4, we have diverged from [8], giving our own
explanation which echoes the way we go on to construct Σ, so as to make comparison of
the two easier.

3) Except in the case of section 2A, all examples in this chapter are our own. Example IV.3
is mentioned merely in passing in [8]; there it is neither used as motivation for retractions,
nor to link to the Davis complex.

4) In [8] mainly weak buildings are discussed. He gives as his first axiom that all the apart-
ments are Coxeter complexes. We have decided to follow [25] here by giving the definition
of a thick building and working towards the result that every apartment is a Coxeter
complex. Despite this, for the content of the section, we mainly adapt the results in [8]
to this more general setting.

5) The only book cited other than [13] which mentions the Davis complex in more than
passing is [3], where P. Bahls devotes a section to introducing the very basic ideas, but
with no theory. This is a good way to acquaint oneself with the idea before tackling the
full construction.

6) We have found no explicit comparison of the definitions of the Coxeter complex and Davis
complex, like the one we have provided at the start of section 2C: every book which covers
one thoroughly, at most mentions the other in passing. The statement of proposition
IV.6(1) is in [13], but the rest of the statement, and the proofs are our own.

7) The proofs of either theorem IV.2, or that Σ admits a W–invariant piecewise Euclidean
CAT(0) metric could each be the sole subject of a report such as this. We have aimed
to motivate their importance, give sufficient background such that the statements can be
understood, and in the case of the former, give a detailed sketch of the argument so that
its veracity does not seem unreasonable.

10The general definition for a space being CAT(κ) is the same but the comparison triangle is chosen in a space
of constant curvature κ, i.e. the sphere or hyperbolic space.

11The proof is scattered throughout [13], the theorem statement can be found on p. 235.
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Post Script

The aims of this report were three-fold: first to introduce the basic theory of Coxeter groups
at a level at which a beginner in the field would be able to understand; second to compare and
contrast the two approaches for the subject: geometric and combinatorial; and third to define
and introduce the applications of the Coxeter and Davis complexes. We think that one of the
most mathematically satisfying things about studying Coxeter groups is the interplay between
the many different approaches to thinking about them. In this report we have seen 5 different
versions of chambers: the regions in V arising from a geometric reflection group, the simplicial
cones in V ∗ of the reflection representation, the maximal simplices of the Coxeter complex X,
the translates of the fundamental chamber K in the Davis complex, and most importantly, since
the W–action was simply-transitive in all these cases, the elements of W itself, with which we
could label the geometric chambers.

With regard to the first aim, we have motivated the study of groups generated by reflections
which act discretely. We have studied the way they act on a vector space, and looked at
representative range of combinatorial properties, in particular, proving these in depth so as to
peer deeply into the structure of the group. We have also been able to illustrate these ideas with
many examples . As to the second aim, the approach made to the first three chapters was solely
geared towards comparing the geometric and combinatorial view points. We fully justified, as
thoroughly as is practical in this setting, the way in which the reflection representation linked
these two approaches. Moreover we left no doubt of the efficacy of the geometric approach to
solving combinatorial problems. Indeed one might be forgiven for thinking that, after comparing
the proofs of propositions A, B, and C using combinatorial and geometric arguments, we would
do as well to disregard the combinatorial approach altogether. This however would be a great
loss to the field. While geometry is excellent at answering many questions once posed, it is not
very good at posing the questions. Indeed none of the results proved would have occurred to
us to explore if we merely thought geometrically. The algebra also forms deep connections to
other fields of mathematics, in particular Lie groups and Lie algebras. A balance then should
be sought between the two approaches.

The third aim was achieved perhaps to a lesser extent than the other two, largely as a
result of the pragmatic restraints on the length of the report. In particular we had neither the
space nor enough of the relevant background covered to do justice to the Davis complex, as
was evident in the slightly rushed treatment of the material at the end. On the other hand,
the construction of the Davis complex in the first place is significantly more complex than the
construction of the reflection representation, or the Coxeter complex, so we may perhaps at least
console ourselves with the hope that the definition has been explained clearly enough that this
report could form a solid basis on which to research that direction further. We shall conclude
this report with some comments on what areas one might research next and suggested further
reading.

One obvious extension to the more classical study of the geometry of Coxeter groups as
seen in chapter I is to crystallographic groups. These are the groups of symmetries of lattices,
and just as at school one might prove that the only regular tessellations of the plane are by

74



equilateral triangles, squares, and hexagons; one can classify all Weyl groups, those Coxeter
groups which leave invariant a lattice in the reflection representation V . N. Bourbaki defines
a special point in V to be a point a through which passes one representative from each of the
equivalence classes of H under the relation of parallelism [6, chapter V, section 3, No. 10]. For
finite Coxeter groups, the only special point is the origin, but for affine Coxeter groups, the
can form a whole lattice. Identify for example the special points in figure I.6. Studying these
sorts of groups naturally leads to the study of root systems, which we have mentioned a couple
of times because of their omission. Root systems take the approach of studying essentially the
normal vectors corresponding to the hyperplanes instead of the hyperplanes themselves. These
are covered in [6, chapter VI] and [9, chapter 4].

In chapter II we studied combinatorial properties of Coxeter groups, and in particular prop-
erties of the length function. In section III.2 we mentioned in passing Tits’ solution to the word
problem which is based in either of the equivalent conditions (D) or (E). The full treatment of
this combinatorial solution is detailed in many books, for example [8, chapter II, section 3B], or
[9, section 4.3]. If one wanted to study the combinatorics seriously, a good source would be [4].
In particular one would look at a partial ordering on a Coxeter group called the Bruhat ordering,
which is very closely related to the length function. This then leads to the Kazhdan-Lusztig
polynomials which were mentioned in the preface.

As explained in chapter IV, the main application of Coxeter complexes is to buildings. This
report should be sufficient to make the reader very comfortable in approaching [8], which is itself
a comfortable introduction to buildings. Here we were not able to do more that have a brief
look at some of the material K. Brown covers in his first chapter on buildings. Alternatively,
in chapter 5 of [13], M. Davis introduces a very complicated construction of a space U given a
discrete group G, and a mirrored space X. This is a significant generalisation of the spaces X
and Σ which we defined, and indeed both of these can be defined using U. One can study the
homology of this space in general, and with it prove the much stronger version of proposition
IV.7, that Σ is contractible [13, theorem 8.2.13], and much else besides. There is also the proof
of the existence of the CAT(0) metric on Σ.

For a general introduction to Coxeter groups, we recommend the first 3 chapters of [8], and
[17]. For a more formal treatment, the authoritative work on the subject is [6]. This is not for
the faint of heart, but very well worth the effort if given the time. [16] also covers much of the
material there, but the proofs and exposition are easier to follow. For a detailed study of the
combinatorial side of Coxeter groups, one needs go no further than [4]. By the nature of the
mathematics, the notation and the proofs are quite heavy, but still approachable. The theory
surrounding the material covered here in chapter IV is treated encyclopedically by [1] and [13],
which together are more than 1300 pages on the geometry of Coxeter groups and the theory of
buildings. We find [1] slightly more approachable than [13], but both cover fascinating material
really well.
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Appendix A

Spaces on which Coxeter Groups Act

A.1 Classification of Affine Coxeter Groups

Theorem A.1. Let (W,S) be an irreducible Coxeter system, then it is an affine reflection group
if and only if its diagram appears in table E.1. [13, theorem C.1.3]

Ã1
∞

Ãn
· · · for n ≥ 2

B̃2
44

B̃n
· · · 4

for n ≥ 3

C̃n
· · ·4 4

for n ≥ 3

D̃n
· · · for n ≥ 4

Ẽ6

Ẽ7

Ẽ8

F̃4
4

G̃2
6

Table E.1: The Coxeter diagrams corresponding to affine Coxeter systems.
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A.2 Classification of Compact Hyperbolic Coxeter Groups

Theorem A.2. Let (W,S) be an irreducible Coxeter system, then it is a hyperbolic reflection
group with fundamental chamber which is a compact simplex if and only if its diagram appears
in table E.2. [13, theorem C.1.4]

n = 2

r

p q with β = 1
p + 1

q +
1
r < 1

n = 3

5

5 4

5 5

5

4 5

4

4

5

5

4

5

n = 4

5

5 4

5 5 4

5

Table E.2: The Coxeter diagrams corresponding to compact hyperbolic Coxeter systems.

A.3 Rigidity and Finite Coxeter Groups

In the proof of theorem III.6, we assumed that W was irreducible in two places: when applying
the classification theorem to justify that every Coxeter presentation of a given finite Coxeter
group has the same number of generators, and for proving the reverse implication. Without
that assumption, we can prove:

Theorem A.3. If a finite Coxeter group W acts essentially on a vector space V of dimension
n then it has a Coxeter presentation with n generators.

Proof. Assume that W acts essentially on V , then it is clear that W is generated by at least
n reflections. By theorem I.2 the associated chambers are simplicial cones. Lemma I.1 says
then that each chamber has n walls, and since W is generated by reflections in the walls of
any chamber, theorem I.1, W is generated by exactly n reflections (which is a Coxeter-type
presentation by the proof that (A) implies (C), in which the generators which appear in the
statement of (A) are the same as those in the presentation eventually constructed for (C) —
for details see the proofs of the various implications either given or cited throughout). ■

The distinction is that a given reducible finite Coxeter group W , it may have presentations
with different numbers of generators, say n in one case and m in another, and so W can be
made to act essentially on Rn and on Rm.
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This is a manifestation of the Isomorphism Problem. To try and resolve these issues, people
study rigidity of Coxeter systems, and a survey of these sorts of results is made in [3]. We shall
state one result in this area which helps in the case of this particular theorem.

Definition A.1. A Coxeter system (W,S) is reflection rigid if there is an automorphism
α ∈ Aut(W ) such that α(S) = S′ for every system (W,S′) which has the same reflections as
(W,S)1, that is R = {wsw−1 | w ∈W, s ∈ S} = {ws′w−1 | w ∈W, s′ ∈ S′} = R′.

The existence of such an automorphism α means in particular that the number of generators
of any Coxeter system which has the same reflections must be the same. In such a case one
could say that the pair (W,R) has n generators, which is an improvement.

Theorem A.4. Let (W,S) be a finite Coxeter system, then it is reflection rigid.

Proof. Let (W,S) be a Coxeter system with R the set of reflections. We claim that the de-
composition of W into irreducible components as in theorem II.2 can be reconstructed from
the set R. Indeed, take a maximal partition of R such that any two reflections in different
elements of the partition commute. The groups generated by the elements of this partition are
the irreducible components of W . If (W,S′) is another system for W with R = R′, then there
are isomorphisms between the irreducible factors so we are reduced to the case that (W,S) is
irreducible.

Suppose (W,S) and (W,S′) are two irreducible systems for W . W is finite, with R = R′, so
[7, theorem 3.8] says precisely that #S = #S′. The theorem now follows from the classification
of finite Coxeter systems, theorem III.5. [7, theorem 3.10] ■

There are examples of finite Coxeter groups which are not rigid (which is what you would
need to completely remove the ambiguity over the number of generators), but only reflection
rigid. For example the the dihedral groups D2k for k odd [3, p. 53]. One can immediately
conclude from the last two theorems that if W is a Coxeter group which acts essentially on two
vector spaces of different dimensions, then the set of reflections in those two actions is going to
be different, as you would intuitively expect.

1A Coxeter group is rigid if such an automorphism exists for any two associated Coxeter systems.
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Appendix B

Simplicial Complexes

B.1 Posets

We shall begin be defining some necessary concepts from set theory and topology.

Definition B.1. A set P with a relation between some of its elements, written ≤, is a poset
(or partially ordered set) for all a, b, c ∈ P

1) a ≤ a (reflexive),

2) if a ≤ b and b ≤ a, then a = b (antisymmetric),

3) if a ≤ b and b ≤ c then a ≤ c (transitive).

If p ∈ P, we write P≤p = {x ∈ P|x ≤ p}. We generalise this in the obvious way to P<p, P≥p,
and P>p

Definition B.2. Let a and b be elements of a poset P; if they exist, the greatest lower bound
of a and b is the meet, written a∧ b, and the least upper bound of a and b is the join, written
a ∨ b.

Example B.1.

1) Let A be any set, then P(A), the power set of A, is a poset with relation given by set
inclusion ⊆.

2) N is a poset ordered by divisibility; so 1|2, 3 and 2, 3|6, but neither 2|3 nor 3|2. The meet
of 2 and 3 is 2 ∧ 3 = 1, and their join is 2 ∨ 3 = 6. This is summarised in figure B.1.

6

2 3

1

Figure B.1: The Hasse diagram for 6 showing the divisibility relations between it and its divisors.

Definition B.3. Let P and P′ be posets ordered by≤ and⊆ respectively. A bijection ϕ : P 7→ P′

which preserves the order structure, that is ϕ(a) ⊆ ϕ(b) if and only if a ≤ b for all a, b ∈ P,
is called a poset isomorphism. If P and P′ coincide, such an isomorphism is called an
automorphism.
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B.2 Abstract Simplicial Complexes

Definition B.4. An abstract simplicial complex consists of a (possibly infinite) vertex set
V and a collection ∆ of finite subsets of V called simplices, such that

1) ∀v ∈ V, [v] ∈ ∆,

2) if σ ∈ ∆ and σ′ ⊆ σ, then σ′ ∈ ∆.

where we write simplicies with square brackets. We shall sometimes require that the empty
simplex is included, so that any two simplices have a lower bound, and hence a meet, we
shall sometimes specifically exclude the empty set1. We say the dimension of σ ∈ ∆ is
dim(σ) := #σ− 1, then σ of dimension k is a k–simplex, and σ′ ⊆ σ in ∆ is a facet of σ. The
dimension of ∆ is the maximum over the dimension of the simplicies in ∆. We say that the
empty simplex has dimension −1.

A subset ∆′ of ∆ is a subcomplex if it is an abstract simplicial complex. For k less than
or equal to the dimension of ∆, the k–skeleton of ∆ is the subset ∆(k) of all simplicies of
dimension at most k.

For a normal simplicial complex, we think about triangles and line segments embedded in
some real space. In this case however, we are abstracting away almost everything, and saying
that having specifying 3 vertices is as good as specifying a triangle, hence a 3–simplex becomes
just a 3 element subset of an arbitrary set.

Remark B.1.

1) The first condition specifies that indeed all the vertices in the vertex set are 0–simplicies
in the abstract simplicial complex, so ∆(0) = V.

2) The second condition just means that if ∆ contains some k–simplex, then it also contains
all of its facets.

3) Clearly ∆ is a poset ordered by set inclusion, and if σ ∈ ∆, then ∆≤σ = P(σ)\{∅} or
P(σ).

Definition B.5. Let ∆ and ∆′ be abstract simplicial complexes. A map ψ : ∆ 7→ ∆′ is a
simplicial map if it maps vertices to vertices and simplices to simplices. If the image of any
simplex under ψ is a simplex of the same dimension, we say that ψ is non-degenerate. Any
such non-degenerate simplicial map is a poset isomorphism when it is restricted to any simplex
in ∆.

In the preceding comments, we made some effort divorce the abstract simplicial complex
from the geometric intuition about ordinary simplicial complexes. Now we shall undo that.
Given an abstract simplicial complex, we can realise it as a simplicial complex in a real vector
space. We do exactly what one might expect: if V is the vertex set take #V = n vectors
(in general position) in Rn−1 of appropriate dimension, labelled by V. Then if σ ∈ ∆ is the
k–simplex [v1, . . . , vk+1], add a k–simplex to Rn−1 with the appropriate vertices.

More precisely, if ∆ is an abstract simplicial complex with vertex set V, let ∆V be the
standard (#V)–simplex whose vertices are labelled by V. For each finite non-empty σ ∈ ∆,
denote by ρσ the face of ∆V spanned by σ.

1This awkwardness is unavoidable. In his work on Coxeter complexes and buildings, J. Tits included the
empty simplex in his definitions, and this has some non-trivial consequences: we would have to amend axiom
(B4) for buildings, and we use the empty simplex tacitly throughout section 1D of chapter IV. See remark IV.1
for more discussion of the interpretation of the empty simplex. On the other hand M. Davis specifically excludes
it when defining for example, the nerve of a Coxeter system, see definition IV.7.
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Definition B.6. The geometric realisation of ∆ is Geom(∆), which is the subcomplex of
∆V defined by

ρσ ∈ Geom(∆) ⇐⇒ σ ∈ ∆

B.3 Join

Definition B.7. The join of abstract simplicial complexes J and K with vertex sets VJ and
VK , can be defined as the subcomplex of P(VJ ⊔ VK) (the full abstract simplicial complex on
VJ ⊔ VK) given by

ρσ ∈ J ∨K ⇐⇒ #σ ≥ 2 and σ conains exactly one element of

VJ or exactly one element of VK .

This is equivalent to the definition of join for general posets given above. Taking the geometric
realisation of the complexes, Geom(J) ∨ Geom(K) = Geom(J ∨ K) where the join of two
simplicial complexes consists of the two complexes embedded disjointly in the same space,
along with the union of every line between every point in ever simplex of J and every point in
every simplex of K, see figure B.2.

(a) The join of a simplex and a point forms the cone
of that simplex. (b) The join of two intervals is a tetrahedron.

Figure B.2: Two examples of joins of simplicial complexes.

Definition B.8. Let ∆ be an abstract simplicial complex, v a disjoint point, then we shall
write Cone(∆) = ∆ ∨ [v] for the cone of ∆ over v. If no v is specified, we shall assume that
the point is chosen arbitrarily.

We shall tend not to bother with saying abstract simplicial complex, merely simplicial com-
plex. As one can get between abstract simplicial complexes and geometric simplicial complexes,
it does not make much of a difference, but we shall generally be thinking in abstract terms.

B.4 Barycentric Subdivision

Barycentric subdivision is the natural way of dividing up a simplicial complex into more sim-
plicies. We shall give an informal definition, motivate this definition, and then give the formal
definition.

Take a simplicial complex ∆ in Rn, and for every simplex σ in ∆, choose a point xσ in the
interior of σ, called the barycentre of σ; in particular you might choose xσ to be the “centre
of mass” of σ. Now you add edges to all of the nearby barycentres (noting that each vertex is
its own barycentre, so we still have all of the original vertices), and fill in higher dimensional
simplices in accordance with the original simplicial complex, see figure B.3.
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(a) (b) (c) (d)

Figure B.3: The barycentric subdivision of a 2–simplex (a). The barycentres are shown in (b),
the edges to the nearby barycentres in (c), and the full barycentric subdivision in (d).

Why might you want to do such a thing? Suppose you have a continuous map between two
compact topological spaces; it would be nice if we could approximate this map by a simplicial
map — the simplest kind of map. Suppose one has a triangulation for the spaces. If the
triangulation of the first space is very efficient in the number of simplicies it uses, then one
could easily imagine coming up with some continuous map which was not compatible with
the triangulations (try mapping a triangle continuously onto a square via a simplicial map
— its clearly not possible, even though both are homeomorphic to a circle). However, by
subdividing the first complex sufficiently, you will create enough simplicies that the continuous
map is compatible with the triangulations. The way we formalise this is using the barycentric
subdivision. That you can do this for any continuous map is called the simplicial approximation
theorem [2, Section 5.5, theorem 2].

Definition B.9. Let ∆ be an abstract simplicial complex with vertex set V. The barycentric
subdivision of ∆, written Bs∆, is the simplicial complex whose vertex set is ∆, and σ̃ =
{σ1, ..., σk} ⊆ ∆ is a simplex in Bs∆ if σ1 ⊆ · · · ⊆ σk, i.e. σ1 is a facet of σ2 which is a facet of
σ3 and so on. We denote the nth barycentric subdivision of ∆ by Bsn∆.

How do we relate this definition to our previous picture? Before we chose a point xσ in the
interior of each simplex to be the barycentre of that simplex, so we have one barycentre for each
simplex in the original complex. In the formal definition therefore, we just choose the vertex set
(which is an abstract set) to be exactly the set of simplices in the original complex. The next
step was to build up the simplices in the new complex from the old one. Think about what
being one of the “nearest” barycentres means in terms of the facet relation between simplices.
Similarly how should the 2–simplices in Bs∆ relate to the simplices in ∆ in terms of the facet
relation? It is easy to convince yourself that the condition we have put on σ̃ for it to be a
simplex in Bs∆ is the correct one.

Barycentric subdivision can be extended to cells which are not simplicies in the analogous
way, see figure B.4 on page 85 for the barycentric subdivision of a hexagon.

B.5 Flag Complexes

Definition B.10. An incidence2 relation on a set V is a binary operation which is symmetric
and reflexive.

If V is a set equipped with an incidence relation, a flag in V is a subset of pairwise incident
elements. We write Flag(V) for the set of all finite flags in V, partially ordered by inclusion.

Definition B.11. Since an incident relation is reflexive, [v] ∈ Flag(V) for all v ∈ V. If
σ ∈ Flag(V), its elements are all pairwise incident, hence any subset σ′ ⊆ σ is also a finite flag.
Hence Flag(V) is an abstract simplicial complex, which we call the flag complex of V.

2An incidence relation is an equivalence relation where we drop the requirement that it be transitive. The
name comes from geometry, where we say two lines are incident if the share a common point. This is clearly
reflexive and symmetric, but the case of two parallel lines in the plane, with a third line making an angle with
these two, contradicts transitivity.
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Remark B.2. Given a poset P, we say that p, q ∈ P are incident if either p ≤ q or q ≤ p. So
the flags in P are the finite chains in P, that is to say, the finite totally ordered subsets of P.
Suppose now that P is in fact the poset of cells of an abstract simplicial complex ∆. Comparing
the above description with definition B.9, we see that Flag(∆) = Bs∆.

We say that a collection of simplices in a simplicial complex is joinable if they have a
join (in the sense of definition B.2) in the simplicial complex. We can now give a very simple
characterisation of when a simplicial complex ∆ is a flag complex.

Proposition B.1. Let ∆ be a simplicial complex, then the following are equivalent:

1) ∆ is a flag complex,

2) Every finite set of pairwise joinable simplices is joinable.

3) Every set of three pairwise joinable simplices is joinable.

4) Every finite set of pairwise joinable vertices is joinable.

Proof. The equivalence of (1), (2), and (4) is obvious, so too is the fact that (2) implies (3).
The final implication (3) implies (2) follows by simple induction. [8, chapter I, appendix B,
proposition 1] ■

Definition B.12. The geometric realisation of a poset P is the geometric realisation of the
flag complex of P, Flag(P). We write

|P| = Geom(Flag(P))

We have two very different but related definitions of geometric realisation, the first of a
simplicial complex, the second of a poset. In example IV.5 we have a poset which is also a
simplicial complex, and we shall consider both the geometric realisation of it as a simplicial
complex, and as a poset, and see that they are different.

B.6 Chamber Complexes

Definition B.13. A finite dimensional simplicial complex ∆ is a chamber complex if all
maximal simplicies have the same dimension (equivalently, every simplex of dimension less than
∆ is a facet of a simplex of higher dimension), and can be connected by a gallery (a sequence
of maximal simplicies in which consecutive simplicies share a face, i.e. are adjacent). We shall
call the maximal simplices chambers.

Definition B.14. A chamber complex is thin if every co-dimension 1 facet is the face of exactly
two chambers, it is thick if every co-dimension 1 facet is the face of at least 3 chambers.

Definition B.15. Let ∆ and ∆′ be two chamber complexes of the same dimension, then a
non-degenerate simplicial map ψ from ∆ to ∆′ is called a chamber map (i.e. a simplicial map
which takes chambers to chambers, see definition B.5). If ∆′ is a subcomplex of ∆, and ψ|∆′ is
the identity map, then ψ is called a retraction.

Chamber maps necessarily take adjacent chambers to adjacent chambers, and hence galleries
to galleries.
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B.7 Colourings

Definition B.16. Let ∆ be a chamber complex of finite dimension n, and let I be an abstract
set with n elements. A colouring3 of ∆ by I is a map which assigns to each vertex an element
from I such that the vertices of each chamber have distinct “colours”. The type of a simplex
on ∆ is the subset of I used to colour its vertices.

Lemma B.1.

1) If a chamber complex is colourable, then there is only one colouring up to bijections between
the colouring sets.

2) If a chamber complex is the barycentric subdivision of a simplicial complex, then it is
colourable.

Proof.

1) If a colouring of one chamber is fixed, then since the adjacent chambers share all but
at most one vertex with the original chamber, their colouring is also determined. Since
all chambers can be connected by a gallery, this colouring extends uniquely to the whole
complex.

2) Since the vertices of a barycentric subdivision are the simplices in the original complex,
one can colour them by their dimension.

[8, p. 30] ■

We can rephrase the definition of a colouring in terms chamber maps. Let ∆ be a simplicial
complex ∆I be the simplex with vertex set I, for I a set of size dim∆+ 1. A colouring of ∆ is
the same as a chamber map κ : ∆ 7→ ∆I ; hence ∆ is colourable if and only if it admits such a
chamber map.

B.8 Chamber Systems and Links

Definition B.17. Suppose ∆ is a colourable chamber complex, coloured by a set I. Any co-
dimension 1 simplex is labelled by I\{i} for some i ∈ I. For a fixed i ∈ I, two chambers are
i–adjacent if they share a face which is coloured by I\{i}. This is an equivalence relation for
each i, and so we define the chamber system associated to ∆ to be the collection of chambers
of ∆ together with the relations of i–adjacency.

Definition B.18. Let ∆ be a chamber complex and A a simplex of ∆. The link of A in ∆,
written lk∆A = lkA is the set of simplicies which do not have A as a facet but are nevertheless
joinable to A. The link is the boundary of the smallest subcomplex containing a small open
neighbourhood (once translated into the geometric realisation) of A in ∆.

lkA is a subcomplex of ∆. The maximal simplicies of lkA are in bijective correspondence
with the chambers which have A as a facet. In figure B.4, the link of the central vertex is the
boundary of the hexagon for example. lkA may not itself be a chamber complex. For example,
suppose removing A and all its facets from ∆ left it disconnected, then lkA is not connected,
so not every maximal simplex would be joined to every other by a gallery. In figure B.4, the
link of the central vertex is the boundary of the hexagon for example.

We can use the link to say when we can safely forget about everything else in ∆, and just
think about its chamber system.

3K. Brown uses the term “labelling” in [8] which we avoid so as not to confuse with our labelling of chambers
by elements of W . Indeed it would seem that he came to the same idea, as this is the terminology adopted in [1].
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Figure B.4: A chamber complex, the barycentric subdivision of a hexagon.

Lemma B.2. Let ∆ be a coloured chamber complex in which the link of every vertex is again
a chamber complex; then ∆ is determined up to isomorphism by its chamber system.

Proof. We say that two chambers in a chamber system are (I\{i})–equivalent if they can be
joined by a gallery in which no two consecutive chambers are i–equivalent. This is another
equivalence relation. The condition pertaining to links means that under this relation, two
chambers are (I\{i})–equivalent if and only if their vertices coloured i coincide.

We can use this to reconstruct ∆, it has one vertex coloured i for each (I\{i})–equivalence
class. A subset of these vertices is a simplex in ∆ if and only if their corresponding equivalence
classes have non-empty intersection. [8, chapter 1, appendix D, proposition 1] ■

B.9 Cayley Graph and Complex

Definition B.19. Let G be a group, with a set of generators S each of which is order 2. The
the Cayley graph Cay(G,S) has vertex set G, and there is an edge between g and g′ if and
only if g′ = gs or g = g′s for some s ∈ S.

Since S generates G, Cay(G,S) is connected, G clearly acts on Cay(G,S) as a graph
automorphism by left multiplication, and moreover G acts simply-transitively on the vertices.
Since the identity is not in S, Cay(G,S) is a simple graph (i.e. it contains no double edges
or cycles of length 1). Given the Cayley graph of a group G, S can be read off by looking
at the nearest neighbours of some chosen vertex, which can be thought of as the identity by
simple-transitivity.

Definition B.20. Let G be a group with presentation ⟨S | R⟩, and let Cay(G,S) be the
corresponding Cayley graph. The Cayley presentation 2–complex, written Λ = Cay(G, ⟨S |
R⟩) is the 2–complex obtained from Cay(G,S) by adding a 2–cell for every relation in the group
generated by R excluding relations of the form s or s2, for s ∈ S (where we write all relations in
R in the form word = ε, and then generate a group by the words on the left hand side). Words
in ⟨R⟩ are sequences of generators, which correspond to closed loops in Cay(G,S) from any
chosen base vertex, so we add a polygonal cell which has boundary one of these loops, starting
from each vertex of Cay(G,S) to get Λ.

Proposition B.2. Λ is simply connected. ■

For a proof, see [13, proposition 2.2.3]

Notes

Sections B.1 to B.4 are based on [13, appendix A], and sections B.5 to B.8 are based on [8,
chapter I, appendix]. Section B.9 is based on [13, chapter 2]. Consultation of [3] has also been
made.
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